How Cannabis was Criminalised – The UK, League of Nations, Egypt, Turkey

How Cannabis was Criminalised.

Cannabis first became illegal in the UK, and most of the rest of the world, on 28th September 1928 when the 1925 Dangerous Drugs Act came into force. There were no British domestic reasons, no lobbying for or against prohibition, and no Parliamentary debates.
The Act controlling ‘Indian Hemp and all resins and preparations based thereon’ had been passed after Britain signed the 1925 Geneva International Convention on Narcotics Control, organised by the League of Nations. Asked what it was all about on a slow day in Parliament, a junior Home Office Minister explained that the Convention could not be ratified without an ‘important but small’ law being passed. ‘What it does is include coca leaves under a former Act. They are the real basis of cocaine – we place them in the same category as raw opium.’ Cannabis itself was ever mentioned aloud.
This apathy was nothing new. When the 1920 Act controlling opium and cocaine was passed, there were problems finding enough MPs to vote on the committee stages. In 1893 a huge report by the Indian Hemp Drugs Commission had concluded that ‘the moderate use of hemp drugs is practically attended by no evil results at all’. It recommended, for India, ‘restraining use and improving the revenue by the imposition of suitable taxation’ at ‘as high a rate of duty as can be levied without inducing illicit practices’ on the grounds that ‘the best way to restrict the consumption of drugs is to tax them.’ Taxes on cannabis were already normal in India – Bengal state government made about £100,000 per year through the 1860’s [£5-10 million in today’s money]. This report from the Empire was never publicly discussed in the UK, and the authorities were content to have no laws at all controlling cannabis for another thirty years.
The herb had few supporters in the 1920’s. European hemp for ropes and paper was usually believed to be a separate plant, though related. Modern medical uses were rare and both traditional herbal medicines and patent potions had become unfashionable at the turn of the century, after campaigns by the British Medical Association. Apart from a few adventurous poets and musicians, there were hardly any recreational cannabis users in Europe.
There was little or no opposition to cannabis use, either. Prohibitionist campaigns worked against alcohol and cocaine at home, opium abroad. Some people thought opiate users would take up cannabis if their supplies were cut off. ‘Drugs’ were seen as filthy foreign stuff which should be suppressed for the foreigners’ own good. Fear and contempt of ‘coloureds’, and of sex, was the visible motive in a few 1920’s newspaper drug scandals about foreigners with cocaine or opium, and the English girls they allegedly corrupted and destroyed, but cannabis was rarely accused.
Cannabis was added to the agenda of the 1925 Convention on Narcotics Control because Egypt and Turkey proposed it. Both countries had histories of prohibition based on interpretations of Islamic law; newly secular, they were trying to be ‘modern’. The Egyptian delegate denounced ‘Hashism’ which he said caused from 30-60 per cent of the insanity in his country. ‘In support of this contention… there are three times as many cases of mental alienation among men as among women, and it is an established fact that men are much more addicted to hashish than women’. Hashish addicts, he said, were regarded as useless derelicts. ‘His eye is wild and the expression of his face is stupid. He is silent; has no muscular power; suffers from physical ailments, heart troubles, digestive troubles etc; his intellectual faculties gradually weaken and the whole organism decays. The addict very frequently becomes neurasthenic and eventually insane.’
These claims for the dangers of cannabis made in 1925 were not investigated by the League of Nations until ten years after it was banned. That study was never completed. The only serious investigation made previously was the 1893 Indian Hemp Drugs Commission Report, which contradicted most of the Egyptian’s speech, but was not referred to. India opposed banning cannabis in the Convention, as their delegate said it had been used there since time immemorial, grew wild, and they doubted that a prohibition could be enforced. The British delegate suggested that it should be considered further and abstained from the vote, but signed in the end, along with another 57 nations.
Drugs laws in the United States have a quite different history. The USA never joined the League of Nations, and didn’t sign the 1925 Convention because they were more anti-drugs than any other nation. They proposed that opium use be completely banned world wide within ten years, and walked out of the conference when this was rejected, before cannabis was mentioned.
Alcohol was prohibited in the USA from 1920-33, and as early as 1911 hearings on a Federal anti-narcotics law heard debate on controlling cannabis. The USA unsuccessfully proposed that cannabis be discussed at the Hague Conference on opiates in 1912. Their enthusiasm for drug control was a mix of moralism and self-interest, both tending to boost America’s developing international influence. Most medical drugs were imported, so controlling them made little difference to US domestic policy, but gave the US a moral and economic lever against their producers, mostly Britain and Germany. Cannabis was an exception, so it had some friends in the pharmaceutical, veterinary, and seed oil industries. It also had enemies among the press and politicians who used it as part of an attack on Mexican immigration and Black cultural independence..
William Randolph Hearst’s newspapers introduced the word ‘marijuana’ into English from Mexican slang, confusing the public into thinking this devil weed was quite different from the familiar agricultural plant hemp. Hearst sold lots of newspapers using stories about coloured men using drugs to corrupt white women. Many of them allegedly carried big knives and would go wild at any provocation. Others were perverts. The specific drug and the race of the villains changed every few years, but the story never did. Versions are still used in some anti-drug campaigns. Marijuana had its turn from the 1920s-60’s. Hearst also had massive wood pulp paper making interests which would have been damaged by wider use of hemp fibre.
After missing out on the 1914 Harrison Narcotics Act and the 1925 treaty, there was no Federal control of cannabis until 1937, though several Southern states with Mexican immigrants urged the Government to ban it. Research funded by New Orleans’ District Attorney associated marijuana with the loss of civilised inhibitions, leading to rape, murder and homosexuality. The press spread these politically motivated ‘scientific research’ stories enthusiastically.
In 1931 former Prohibition Commissioner Harry J Anslinger was appointed head of the Federal Bureau of Narcotics. At first he was reluctant to extend his national powers over marijuana, although he thought it was an evil, because it seemed a localised problem, and impossible to enforce prohibition of a plant which had some legitimate uses and grew wild ‘like dandelions.’ For a Federal law to work, all uses of the plant had to be controlled together. Instead, he encouraged State laws and anti-drug propaganda.
By the 1930’s Depression, mechanised hemp production was a potential threat to paper and cellulose producers. The supposed wickedness of job and woman-stealing dope-crazed foreigners was a vote winner. So the herb had new enemies. Malicious, racist press stories, pseudo-scientific reports, and political pressure multiplied. By 1935 Anslinger was promoting a federal law which his FBN could enforce. In Congressional hearings to plan it, all positive evidence was suppressed. The American Medical Association and the Oil Seed Institute opposed the law, but were ignored. Anslinger quoted press cuttings as proof that cannabis was ‘the most violence-creating drug on this planet’. From October 1st 1937, the Marijuana Tax Act made it illegal to grow or transfer any form of cannabis without a tax-paid stamp – which were never made available to private citizens. Possession laws varied between States until 1970.
Anslinger used the new law to expand his Bureau. He began an ugly campaign against ‘demon dope’ using films and posters, associating it with jazz [‘voodoo music’], inter-racial sex, madness and death. The FBN suppressed or abused any research showing that marijuana was not an extreme danger, notably the 1944 ‘LaGuardia Report’ commissioned by the Mayor of New York. He led US delegations to every international drug control body until sacked by President Kennedy in 1961. Most countries didn’t think they had a problem with cannabis until the 1960’s. Anslinger did his best to persuade them otherwise.
In 1945 there were only 4 prosecutions for cannabis offences in the UK, and 206 for opium. In 1950 for the first time ever there were more prosecutions for cannabis than for opium and manufactured drugs put together – 86 against 41 opium and 42 others. That year a series of police raids on jazz clubs produced a fresh crop of British news stories about black men with drugs and white women. Cannabis had finally got into the local shock horror league, but it wasn’t to become the world’s favourite illegality for a few more years.
Three events abroad had long term effects. In 1961 a new treaty was organised, the United Nations Single Convention on Narcotics Drugs. It updated all previous drugs treaties, and set up classifications of drugs according to their supposed harmfulness. Cannabis went into the same list as the opiates and cocaine, ‘having strong addictive properties’ and/or ‘a risk to public health.’ Only medical or scientific uses were permitted, and the World Health Organisation [advised by Anslinger] considered cannabis to have no modern medical value. Traditional and non-drug uses were to be closely controlled by governments. It was resolved that ‘use of cannabis is to be discontinued within 25 years’. The USA actively joined in creating and enforcing the Single Convention, guided by Harry Anslinger. His sacking and the identification of ‘active ingredient’ tetrahydrocannabinol [THC] in 1964 made serious research possible again, but too late for more realistic laws to be passed.
By the early 60’s recreational drug use was increasing in the white, suburban classes, influenced by American beatnik writers and folk singers, jazz and blues musicians. These arts went part way across racial divisions. ‘Pot’ was becoming fashionable among a bohemian, arty elite because the propaganda was partly believed. It was seen as a jazzy, sexy, Black thing to do, and [in Europe], an American thing. English bourgeois hipsters were scared but proud of being able to score from Cockney hoodlums or ex-colonial Caribbean and Indian immigrants. It was also one of the fun parts of being connected with deep political movements. In the USA Civil Rights and anti-war movements and British CND, millions of sincere, liberal-minded young people met skilled organisers, famous philosophers, anarchist radicals, and pot-smoking hedonists. It was probably inevitable that ideas developed about a politics of personal growth, and the right to any pleasure that does no harm to others. Soon white middle-class youth were smuggling and dealing to their own class. Often they believed they were benefiting a new, happier and calmer society.
1964 was the first year when more white people than black were convicted of cannabis – related offences in the UK. It was also the first year in which less than half of the people convicted were sentenced to prison. The total number of convictions, 544, was a little lower than in the previous two years.
Cannabis really started its lurch into mass consciousness, mythology says, sometime in 1964 when the Beatles met Bob Dylan at an airport in America. He offered them a joint in the VIP lounge. Only Ringo tried it then, but soon they were all very enthusiastic. Other popsters and their fans learned about drugs from old jazz and blues men, and beatniks like the poet Allen Ginsberg. He was one vital link between literary circles, artists, aristos, politicians, pop stars and fellow pot-smokers all over the world. On demonstrations for free speech, he gave Buddhist chants to cops with tear gas. In the UK his then-illegal homosexuality found him introductions to a persecuted underground with friends in high places and hopes of changing an unjust law. He contributed to The Marijuana Papers [1966], the first mass market book about cannabis, suggesting advertising for public support for legal changes, and got an MP to find a copy of the Indian Hemp report in the House of Commons Library.
The 1965 Dangerous Drugs Act began to bring UK law in line with parts of the UN Single Convention. An Advisory Committee on Drug Dependency was set up, and a sub-committee chaired by Baroness Wootton started to look into the legal position of cannabis, still the same as for opiates,with no distinction between possession and supply. A new crime was invented, allowing premises to be used for drug taking. Convictions for cannabis offences rose by 79% in a year – in 1967 they rose another 113%. Up to 90% of those convictions were for personal possession. According to the Wootton Report, 15% of people convicted for possessing under 30 grams were sentenced to prison, including 13% who had no previous convictions.
Some police used their power to stop and search anyone they suspected of carrying drugs, to harass black people and longhairs. Specialist Drugs Squads were set up. Guided by the gossip columns of the News of the World, they raided Black meeting places and pop stars’ mansions. The Rolling Stones and Beatles were favourites. Other newspapers and politicians spread sensationalist stories, apparently intended to influence the Wootton Committee into suggesting harsh penalties.
In early 1967 the National Council for Civil Liberties published a pamphlet about the discriminatory ways the law worked, the increase in unjustifiable searches, accusations of evidence planting, and the harshness of sentencing.
After a demonstration in Fleet Street against the rising tide of harassment guided by press malice, two close-linked organisations were set up. Release aimed to give advice to young people in trouble with drugs or drugs laws; within months they had hundreds of referrals. SOMA campaigned to improve the cannabis law. Their first action was a full page advertisement in the Times on July 24th 1967, headed ‘The law against marijuana is immoral in principle and unworkable in practice’. Below that, a quote from the philosopher Spinoza: ‘All laws which can be violated without doing anyone any injury are laughed at… He who tries to determine everything by law will foment crime rather than lessen it.’ The rest of the advert was an explanation of how damaging the law was, compared with the harmlessness of cannabis. There were quotes from modern medical opinions such as ‘does not lead to degeneration, does not affect the brain cells, is not habit forming, and does not lead to heroin addiction’. It was signed by 72 prominent people including some of Britain’s best-known artists and writers, two Nobel Prize winners, two MP’s, journalists, doctors and the Beatles [who paid for it].
SOMA were not arguing for cannabis laws to be abolished or for full legalisation. Their proposals were; to permit and encourage research and medical uses; abolish the ‘allowing premises to be used’ offence; remove cannabis from the dangerous drugs list; either permit possession or set a low maximum fine; abolish imprisonment for possession and release the prisoners. They’d talked with some of the Wootton committee about cautious wording which might be acceptable, and one member of the commit signed the advert. The campaign was ultimately aimed at liberal opinion-formers, especially Home Secretary Roy Jenkins, who was then liberalising the laws against male homosexuality.
In an inconclusive debate four days after the advert, the Indian Hemp Drugs Commission got its first mention in Parliament after publication, seventy-three years late. Anecdotes were exchanged about police misbehaviour and heroin addicts who’d once smoked pot. The government suggested that more information was needed before laws could be relaxed, and international treaties would make it difficult – which is still the Home Office line thirty years later.
The Wootton Report was ready early in 1968, but not published until January 1969. Meanwhile it was leaked to the press, who were almost all hostile, producing headlines like ‘The deadly path to addiction.’ New Home Secretary Jim Callaghan announced that he disagreed with the report, weeks before it was officially released. It recommended making a clear legal distinction between cannabis and other drugs, and reducing penalties for cannabis offences. The committee were, cautiously, ‘in agreement… that the long-term consumption of cannabis in moderate doses has no harmful effects.’ Although no encouragement should be given to the wider use of cannabis, the dangers of its use were overstated and the existing penalties unjustifiably severe. They wanted a situation where nobody would be sent to prison for cannabis possession.
The eventual parliamentary debate was extremely feeble. The committee’s research and conclusions were pushed aside as if they did not exist. Callaghan suggested they’d been excessively influenced by the ‘notorious’ Times advert and the ‘pro-cannabis lobby’. He told the ‘leads-to-heroin’ story and said that he was glad to help ‘halt the advancing tide of so-called permissiveness’. Few speakers appeared to have read the report, preferring old anecdotes or the newspapers’ selective interpretations.
Still, the drugs laws were acknowledged to be a mess. Callaghan blocked it for a while, partly influenced by more leaks to a hostile press, but what was to be the 1971 Misuse of Drugs Act had passed through Labour Cabinet committees before the Conservatives won the 1970 election.
Campaigning for cannabis faded over the three years before parts of the Wootton Report were acted on. There were too many other struggles in the underground, and too much disillusion with conventional politics. SOMA closed down in 1970; the Wootton Committee had made proposals similar to those in the Times advert. The founder, Steve Abrams, felt that the new law would be much more liberal in practice than the old, and effectively end the threat of prison for personal possession. Another campaign, CARO, was established by Release and the NCCL, but it faded before the Act came into force on 4th April 1973.
The new Act partly followed the more convenient parts of Wootton’s advice. Cannabis was now classified as a class B drug, like amphetamines, with less severe penalties than those for heroin or LSD. Maximum penalties were increased, not reduced – up to fourteen years jail for cultivation, allowing premises to be used for supply, and the new offences of supplying or possession with intent to supply. Up to five years prison was still possible for possession. However, most cases would be dealt with in magistrates courts where ‘only’ six months jail could be imposed and a fine is far more common.
The 1971 Act did not prohibit fibre from stalks, or seeds, and allowed medical and research uses, but all of them needed licences from the Home Office which for many years were issued to only a few official researchers. In 1993 an EEC directive made it possible for a few hemp farms to grow cannabis with very low THC contents under licence. No patient has yet managed to get raw cannabis for medical uses on prescription, though some doctors have licences to use synthetic cannabinoids in research. There have been several attempts to cut sentences for possession back to what Wootton recommended, but the 1971 Act is still in force, and some penalties have actually been increased.
A permanent Advisory Council on the Misuse of Drugs [ACMD] was established by the 1971 Act to help formulate Government policy. Several governments have since ignored the ACMD’s advice about cannabis, which has generally been that it has ‘no significant harmful effects on man’ [but more research is needed, just in case]; and that penalties are too severe, and should be reduced.
In 1977 amendments to a Criminal Law Bill would have ended the power of Magistrates to imprison first time offenders for possession. The ACMD agreed with this in principle and said it should be done urgently, but set up a wider enquiry which took 18 months to report. This was probably the smallest change in the MDA it was possible to suggest. and would have saved no more than six people in 1976. Less modest amendments, such as actually reducing maximum penalties to roughly what the Wootton report had proposed, were side tracked.
Meanwhile the usual suspects launched the Legalise Cannabis Campaign a few months before the fiftieth birthday of cannabis prohibition. They argued that merely lowering penalties would not make the law moral or workable. The provable harm caused by prohibition is far greater than the unproved damage which might in theory be caused by legal cannabis. All penalties for possession and cultivation should be abolished. Despite a lot of public support and a high profile in the first few years, LCC has not succeeded in improving the law, and now barely struggles on with minimal resources.
A series of reports for Governments across the world through the 1970’s found the potential dangers of cannabis to be minor or insignificant. Even the USA’s enthusiasm for prohibition wavered under President Carter, when ‘decriminalisation’ was seriously considered federally and several states made their laws more liberal. An international campaign was started to lobby for changes in the UN Single Convention. Then right-wing populists were elected in America and the UK, willing to ignore both common sense and their own expert advisers in pursuit of ‘law and order’ votes.
In mid 1979 the Advisory Council proposed moving cannabis to class C under the Misuse of Drugs Act, and changing penalties for possession. In principle, they said, imprisonment should no longer be available for a person with no previous convictions, summarily convicted for possessing cannabis; but in practice up to two years jail should still be available. There are no other commonly used illegal drugs in class C, so this was effectively a rule for cannabis alone. Nothing was done about this proposal.
The ACMD established an Expert Group on the health effects of cannabis use, which reported eighteen months later, in November 1981. These official experts said there was insufficient evidence to reach conclusions, but research had ‘not demonstrated significant harmful effects in man’, however, ‘deleterious effects may result in certain circumstances’ So, they still agreed with what they’d said five years earlier about sentencing, but despite tens of thousands of existing scientific studies, felt that more research was needed.
As well as huge fines or prison, since 1986 anyone convicted for almost anything except possession can have money or property confiscated under the Drug Trafficking Offences Act. This American idea of taking away growers’ and dealers’ estimated illegal income which now makes banking privacy a myth in most of the world was supported by a 1988 UN Convention on illicit trafficking. Financial institutions are encouraged, sometimes required by law, to inform on customers who they suspect might be dealing. If the amount the court estimates can’t be found, they give extra prison time.
The new Conservative Government said in 1981 that they had no intention of ever reducing penalties for drugs offences, still less of legalising or decriminalising cannabis. We still have the same government, and they still have the same attitude. Although many first-time possession cases are now dealt with by cautions, maximum sentences were raised in 1994. Possible fines also went up, by 250%. The same year, over seventy-two thousand people were convicted or cautioned for cannabis offences.
The cannabis prohibition laws were passed and are still in force because of official apathy, racism, and the manic waffle of a few professional anti-drug campaigners. Scientific and sociological ignorance has often been deliberately maintained in the face of all evidence. Official policy is to reduce both the supply of and demand for all illegal drugs. It has failed miserably, and done great damage to hundreds of thousands of people.
Over 650,00 people have been convicted or cautioned to date for all cannabis -related offences. Over 80% of those have been for simple possession.
All Cannabis offences 1945 – 94
cannabis offences graph
The 1971 Misuse of Drugs Act came into force in April 1973. An apparent short term drop in convictions, partly caused by changes in what was being measured, was followed by enormous increases, which still continue.
graph
Written by Sean Blanchard.

La legalización del cáñamo en México ayudará a resolver los problemas de la emigración y la pobreza rural



Después de ver a Roy Germano “El otro lado de la inmigración” y de haber vivido en Michoacán, México, durante 2 años, que reconocen los beneficios que la legalización de la marihuana y el cáñamo, llevaría a los EE.UU. y México. (Ver http://youtu.be/F8t78ClZFpY una revisión documental de Germano.)

En la actualidad Estados Unidos sufre de una montaña de deudas generadas en parte por malas políticas agrícolas y de impuestos, una fallida guerra contra las drogas, la política de inmigración no, y un desempleo significativo, y la destrucción de la industria de la agricultura en pequeña facilitado por el TLCAN y la agricultura corporativa. Ya es hora de una nueva dirección.

Mientras tanto, México ha sufrido una disminución significativa en la producción de petróleo y por lo tanto redujo los ingresos por exportación de petróleo. Como ciudadanos mexicanos son incapaces de encontrar empleo en los EE.UU., las remesas se reducirá drásticamente y muchos de ellos regresan a casa a un menor costo de vida. Desafortunadamente, también volver a menos oportunidades económicas en el campo, con la excepción del comercio de drogas ilegales.

20 años de TLCAN ha beneficiado principalmente a los agricultores de EE.UU. corporativo con la ayuda de subsidios federales y conducido a los agricultores mexicanos fuera del negocio a través de dumping por parte de los agricultores empresariales.

México debe aprobar una legislación similar a la HR1831, la agricultura del cáñamo industrial Ley de 2011, presentado por EE.UU. El congresista Ron Paul, que permitirá a sus agricultores para hacer crecer un cultivo comercial como ningún otro.

México, como todas las demás naciones, debe tener acceso a todos los recursos disponibles de energía limpia disponibles en la tierra verde de Dios y esto debe incluir el cáñamo. Legalizar y gravar el cáñamo en toda la República Mexicana, se generan nuevas industrias que podrían ser una parte vital de la solución a muchos de sus problemas económicos, que a su vez ayudaría a resolver el problema de la emigración.

El cáñamo es la cosecha de alto rendimiento, que producen más biomasa por hectárea que la mayoría de otros cultivos y pueden ser utilizados para los biocombustibles, la biomasa, textiles, papel, plásticos, etc. A diferencia del petróleo, carbón, gas natural o combustibles nucleares, el cáñamo es un recurso biodegradable y renovable, que nos podría abastecerse de materias primas durante miles de años, sin cambiar nuestro clima y sin producir residuos que sigue siendo radiactivo durante millones de años.

Gravar todas las etapas de la producción y distribución de este nuevo cultivo y fuente de energía generaría ingresos para los gobiernos municipales y estatales la lucha contra los déficits de ingresos. Licencias de confinar a los ciudadanos y las pequeñas empresas charter que promover negocios sostenibles para los productores rurales de todo el país y empresarios creativos de energía limpia podría contribuir al PIB con las exportaciones de sus nuevos recursos de energía natural y limpia y productos.

Los estadounidenses preocupados por la energía, la contaminación, la guerra, la inmigración ilegal, y la prosperidad económica, debe ser compatible con HR1831 que se encuentra actualmente en manos de la Comisión de Energía y Comercio.

Los mexicanos preocupados por puestos de trabajo suficientes para los agricultores deben presionar a sus propios gobiernos para un proyecto de ley similar y generar una nueva industria en pleno auge y que podría impulsar a México y sus ciudadanos en la prosperidad.

# # Hempforvictory hemp4Mexico

HEMP BIOMASS FOR ENERGY

HEMP BIOMASS FOR ENERGY
RV3
Tim Castleman
© Fuel and Fiber Company, 2001, 2006


Table of Contents

Table of Contents_____________________________________________________________ 2
Introduction_________________________________________________________________ 3
Ways biomass can be used for energy production____________________________________ 3
Burning:_________________________________________________________________________________ 3
Oils:____________________________________________________________________________________ 3
Conversion of cellulose to alcohol:____________________________________________________________ 4
About Hemp_________________________________________________________________ 5
Hemp seed oil for Bio Diesel____________________________________________________ 5
Production of oil__________________________________________________________________________ 5
Production of Bio-Diesel____________________________________________________________________ 5
Hemp Cellulose for Ethanol_____________________________________________________ 6
Forest Thinning and Slash, Mill Wastes________________________________________________________ 6
Agricultural Waste_________________________________________________________________________ 7
MSW (Municipal Solid Waste)______________________________________________________________ 7
Dedicated Energy Crops_____________________________________________________________________ 8
Barriers__________________________________________________________________________________ 8
Benefits_________________________________________________________________________________ 8
The Fuel and Fiber Company Method_____________________________________________ 9
Hemp Biomass Production Model Using the Fuel and Fiber Company Method_______________________ 10
Economic Impact____________________________________________________________ 11
Employment_____________________________________________________________________________ 11
Construction_____________________________________________________________________________ 11
Related agricultural activities________________________________________________________________ 11
Environmental Impact________________________________________________________ 11
Endnotes & References_______________________________________________________ 12


Hemp as Biomass for Energy

Introduction

Hemp advocates claim industrial hemp would be a good source of biomass to help address our energy needs. Since the oil crisis in the early seventies much work has been accomplished in the area of energy production using biomass. Biomass is any plant or tree matter in large quantity. These decades of research have lead to the discovery of several ways to convert biomass into energy and other useful products.
Questions of biomass suitability as compared to other “green” sources of energy are the subject of numerous studies and are not addressed here. Other questions concerning detailed economic and environmental impact, use of GMO’s, and agronomy are also outside the scope of this analysis.
This paper does attempt to explore the options available, and outlines some of the barriers and opportunities regarding them.

Ways biomass can be used for energy production

Burning:

·      Co-fired with coal to reduce emissions and offset a fraction of coal use
·      Burned to produce electricity
·      Pelletized to heat structures
·      Made or cut into logs for heating
Biomass to be burned is typically valued at $30-50 per ton, which makes whole stalk hemp as biomass to be burned impractical due to the high value of its bast fiber. One exception may be found in consideration of the latest gasification technologies used on local small scale and in remote rural applications.
·      Gasification (Pyrrolysis)
Gasification uses high heat to convert biomass into “SynGas” (synthetic gas) and low grade fuel oil which has an energy content of about 40% that of petroleum diesel. By products are mostly “Char” and ash. This technology is readily available commercially in several forms and could be a viable option according to local environmental and economic conditions. Beginning in 1999, Community Power Corporation[i] joined with the US National Renewable Laboratory (NREL) and Shell Renewables, Ltd. to design and develop a new generation of small modular biopower systems. The first prototype SMB system rated at 15 kWe was deployed in the village of Alaminos in the Philippines in early 2001. The fully automated system can use a variety of biomass fuels to generate electricity, shaft power and heat.

Oils:

·      Vegetable, seed and plant oil used “as-is” in diesel engines
·      Biodiesel – vegetable oil converted by chemical reaction
·      Converted into high-quality non-toxic lubricants
There are a number of plants high in oils, and many processes that produce vegetable oil as a waste product. These include soy, corn, coconut, palm, canola, rapeseed, and a number of other promising species. Any of these oils can be converted to biodiesel as described later, with a feedstock cost of $0 + per gallon.

Conversion of cellulose to alcohol:

·      Hydrolysis (Enzymatic & Acid)
Conversion of cellulose to fermentable glucose holds the greatest promise from both a production and feedstock supply standpoint. DOE (NREL) and a number of Universities and private enterprise have been developing this technology and achieved a number of milestones. Production estimates of 80 to 130 gallons per ton of biomass make this technology very attractive.
·      Anaerobic digester (Methane)
Anaerobic digestion is used to capture methane from any waste material. It is confirmed technology under commercialization utilizing landfill gases, wastewater treatment system gases, agricultural wastes from several other sources, particularly hog and cattle manure. It is well suited for distributed power generation when co-located with electrical generation equipment. For example, Corporation for Future Resources[ii] and Minusa Coffee Company, Ltd., located near Itaipé, Minas Gerais, Brazil, have teamed to construct an anaerobic fermentation digestion facility at Minusa’s coffee operation. The 600 cubic meter digester is designed to continuously produce methane rich gas, to be used for coffee drying and electric power production, as well as nitrogen-rich anaerobic organic fertilizer.

CFR/Minusa Anaerobic digester in Brazil.
The digester is constructed from native granite blocks quarried at the Minusa site.

 

File written by Adobe Photoshop® 4.0

This technology may be attractive in some cases when co-located with a hemp fiber processing facility or in remote locations to provide local power generation.


About Hemp

Industrial hemp can be grown in most climates and on marginal soils. It requires little or no herbicide and no pesticide, and uses less water than cotton. Measurements at Ridgetown College indicate the crop needs 300-400 mm (10-13 in.) of rainfall equivalent. Yields will vary according to local conditions and will range from 1.5 to 6 dry tons of biomass per acre[iii]. California’s rich croplands and growing environment are expected to increase yields by 20% over Canadian results, which will average at least 3.9 bone dry tons per acre.

Hemp seed oil for Bio Diesel

Production of oil

Grown for oilseed, Canadian grower’s yields average 1 tonne/hectare, or about 400 lbs. per acre. Cannabis seed contains about 28% oil (112 lbs.), or about 15 gallons per acre. Production costs using these figures would be about $35 per gallon. Some varieties are reported[iv] to yield as much as 38% oil, and a record 2,000 lbs. per acre was recorded in 1999. At this rate, 760 lbs.of oil per acre would result in about 100 gallons of oil, with production costs totaling about $5.20 gallon. This oil could be used as-is in modified diesel engines, or be converted to biodiesel using a relatively simple, automated process. Several systems are under development worldwide designed to produce biodiesel on a small scale, such as on farms using “homegrown” oil crops.

Production of Bio-Diesel

Basically methyl esters, or biodiesel, as it is commonly called, can be made from any oil or fat, including hemp seed oil. The reaction requires only oil, an alcohol (usually methanol) and a catalyst (usually sodium hydroxide [NaOH, or drain cleaner]). The reaction produces only biodiesel and a smaller amount of glycerol or glycerin.

The costs of materials needed for the reaction are the costs associated with production of hemp seed oil, the cost of methanol and the NaOH. In the instances where waste vegetable oil, or WVO, is used, the cost for oil is of course, free. Typically methanol costs about $2 per gallon and NaOH costs about $5 per 500g or about $0.01 per gram. For a typical 17 gallon batch of biodiesel, you’d start with 14 gallons of hemp seed oil; add to that 15% by volume of alcohol (or 2.1 gallons) and about 500g of NaOH. The process takes about 2 hours to complete and requires about 2000 watts of energy. That works out to about 2kw/hr or about $0.10 of energy (assuming $0.05 per kw/hr). So the total cost per gallon of biodiesel is $? (oil) + 2.1 x $2 (methanol) + $5 (NaOH) + $0.10 (energy) / 14 gallons = $0.66 per gallon, plus the cost of the oil.[v] Other costs may include sales, transportation, maintenance, depreciation, insurance and labor.


Hemp Cellulose for Ethanol

Another approach will involve conversion of cellulose to ethanol, which can be done in several ways including gasification, acid hydrolysis and a technology utilizing engineered enzymes to convert cellulose to glucose, which is then fermented to make alcohol. Still another approach using enzymes will convert cellulose directly to alcohol, which leads to substantial process cost savings.
Current costs associated with these conversion processes are about $1.37[vi] per gallon of fuel produced, plus the cost of the feedstock. Of this $1.37, enzyme costs are about $0.50 per gallon; current research efforts are directed toward reduction of this amount to $0.05 per gallon. There is a Federal tax credit of $0.54 per gallon and a number of other various incentives available. Conversion rates range from a low of 25-30 gallons per ton of biomass to 100 gallons per ton using the latest technology.
In 1998 the total California gasoline demand was 14 billion gallons. When ethanol is used to replace MTBE as an oxygenate, this will create California demand in excess of 700 million gallons per year. MTBE is to be phased out of use by 2003 according to State law.
In this case we can consider biomass production from a much broader perspective. Sources of feedstock under consideration for these processes are:

We will address these in turn and show why a dedicated energy crop holds important potential for ethanol production in California, why hemp is a good candidate as a dedicated energy crop, and how it may represent the fastest track to meeting 34% of California’s upcoming ethanol market demand of at least 580-750 million gallons per year.[vii]

Forest Thinning and Slash, Mill Wastes

A 1999 California Energy Commission biomass resource assessment estimated 13.8 million bone dry tons (5.5 Mill, 4.5 Slash & 3.8 thinnings) are available in California.
If practiced within State & Federal regulations, use of this source can have significant beneficial effects. Removal of excess biomass from forests reduces the frequency & intensity of fires, helping control the spread of diseases, and contributes to overall forest health. At 59 – 66 gallons per ton, this could supply as much as 900 million gallons per year.
One proposed California project, Collins Pine’s Chester Mill, which will contribute 20 MGY and be co-located with an existing biomass-powered 12 MW electric generator; yet, there is significant resistance to such uses by several prominent environmental groups, and for good reason – this could eventually lead to widespread destruction of forest habitat by overzealous energy companies willing to disregard the environment in the name of national energy security. Barriers also include harvest cost and capabilities as some slash & thinnings are extremely difficult to access, and the high lignin content of these materials.
If 25% of the available material were used, about 200 million gallons per year could be produced.

Agricultural Waste

In California over 500,000 acres of rice are grown each year. Each acre produces 1-2.5 tons of rice straw which have been until now burned. Alternative methods of disposal are needed, and conversion to ethanol has been under development for several years. There are currently two projects underway proposing to use rice straw: one in California (Gridley) and one in Jennings, LA. If the Gridley project is fully implemented, it will add 25 million gallons of production to California’s already-thin 9 million gallons per year. Barriers include collection costs and the high silica content (13%) of rice straw.
Other agricultural wastes include orchard trimmings, walnut and almond shells, and food processing wastes, for a total of about 700 MGY potential if ALL agricultural wastes were used. This is, of course, impractical, as some must be returned to the soil somehow, plus collection and transport costs will have an effect on viability of a particular waste product. Agricultural waste has the potential to satisfy a significant share of demand, with many factors to be considered when proposing a bio-refinery based on any feedstock, which are determined by full life-cycle analysis.
If 25% of the available material were used, about 175 million gallons per year could be produced.

MSW (Municipal Solid Waste)

Though about 60% of the waste stream is cellulosic material such as yard trimmings, urban waste and paper, this source is not considered a viable option for a number of reasons; these include existing industries that recycle materials and the landfill’s use of green waste as “Alternative Daily Cover” (ADC). Co-location of ethanol production is possible, but only up to about 10 MGY of production. When capital investment is considered, it is generally considered most economical to build larger capacity facilities.
The future of MSW being used for ethanol conversion does not look good. At best, 100 MGY of capacity may eventually come online, but it will be an uphill struggle to compete with higher value uses already in place.



Dedicated Energy Crops

There are 28 million acres of agricultural land in California, of which 10 million acres are established cropland. If 10% of this cropland (1 million acres) were dedicated to production of hemp as an energy and fiber crop, we could produce 150-500 million gallons of ethanol per year.
Greater estimates would result from expanding the analysis to include use of agricultural lands not currently applied to crop production as well as additional land not currently devoted to agriculture. A California Department of Food and Agriculture estimate suggests that each 1 million acres of crop production, occupying roughly 1% of the state’s total land area, would supply the ethanol equivalent of about 3% of California’s current gasoline demand.[viii]

Barriers

A barrier to the development of a cellulose-to-ethanol industry is availability, consistency and make-up, and location of feedstock. Dedicated crops, such as switchgrass[ix], resolve these problems. Cannabis hemp will enhance business opportunities because we can “tailor” the cannabis plant fractions to satisfy multiple end uses such as high value composites, fine paper, nitrogen rich fertilizer, CO2 , medicines, plastics, fabrics and polymers – just a portion of the many possible end uses.

Benefits

Benefits of a dedicated energy crop include consistency of feedstock supply, enhanced co-product opportunities, and increased carbon sequestration. It is commonly held that agricultural industries must focus on multiple value-added products from the various fractions of plants. This value-adding enhances rural development by providing jobs and facilities for value-adding operations. Hemp[x] lends itself to this in a unique way due to the high value of its bast fiber. Market prices for well-cleaned, composite-grade natural fiber are about 55¢ per pound ($1,100 ton); lower value uses, such as in some paper-making, bring $400-$700 per ton, while other value-adding options, such as pulping for fine papers[xi], could increase the value of the fiber to $2,500 per ton.

The Fuel and Fiber Company Method

The Fuel and Fiber Company Method[xii] employs a mechanical separation step to extract the high-value bast fiber[xiii] as a first step in processing. The remaining core material is to undergo conversion to alcohol and other co-products. There is no waste stream and the system will provide a net carbon reduction due to increased biomass production. Conversion efficiency of hemp core is relative to the lignin, cellulose and hemicellulose content and method used. The following table lists some materials often cited as potential sources of biomass and their chemical make-up. A challenge is conversion of hemicellulose to glucose; yet this challenge has been met recently by Genencor, Arkenol, Iogen, and others. These technologies provide conversion of hemicellulose and cellulose fractions to glucose using cellulase enzymes or acid.
Hemp
Cellulose
Hemicellulose
Lignin
Bast
64.8 %
7.7%
4.3 %
Core
34.5 %
17.8%
20.8 %
Soft Pine
44%
26%
27.8%
Spruce
42%
27%
28.6%
Wheat Straw
34%
27.6%
18%
Rice Straw
32.1%
24.0%
12.5%
Corn Stover
28%
28%
11%
Switchgrass
32.5%
26.4%
17.8%
Chemical composition of Industrial Hemp as compared to other plant matter
Lignin has long been viewed as a problem in the processing of fiber, and detailed studies have revealed numerous methods of removal and degradation; commonly it is burned for process heat and power generation. Advances in gasification and turbine technologies enable on-site power and heat generation, and should be seriously considered in any full-scale proposal. Additionally, by full chemical assay and careful market evaluation numerous co-product and value-adding opportunities exist. Such assay should include a NIRS (Near Infrared Reflectance Spectroscopy) analysis, with as many varieties and conditions of material as can be gathered.
Reductions in lignin achieved by cultivation and harvest techniques, germplasm development and custom enzyme development will optimize processing output and efficiency. Incremental advances in system efficiencies related to these production improvements create a significant financial incentive for investors.
The Fuel and Fiber Company Renewable Resource System will process 300,000 to 600,000 tons of biomass per year, per facility; 25% to 35% of this will be high-value grades of core-free bast fiber. The remaining 65% to 75% of biomass will be used for the conversion process. Each facility will process input from 60,000 to 170,000 acres. Outputs are: Ethanol: 10-25 MGY (Million Gallons per Year), Fiber: 67,000 to 167,000 tons per year, and other co-products; fertilizer, animal feed, etc. to be determined. Hemp production will average 3.9 tons per acre with average costs of $520 per acre.

 

Hemp Biomass Production Model Using the Fuel and Fiber Company Method[xiv]

Min
Max
Average
Improve 20%
Totals
Sell 1
Sell 2
Total 1
Total 2
Tons per Acre
1.5
5
3.25
0.65
3.9
Lbs. Bast
(Separated 90-94%)
750
2500
1625
325
1950
0.35
0.55
$682.50
$1,072.50
Lbs. Hurd
2250
7500
4875
975
5850
Gallons Per Ton
20
80
50
$2.00
$3.00
Gallons Per Acre
146
292.5
438.8
Ethanol costs
Per Gallon
0.92
1.37
1.145
167.46
167.46
Ethanol profit
$125.04
$271.29
Gross
$807.54
$1,343.79
Production Costs
Per Acre
424
617
520.5
$520.50
$520.50
Separation costs
Per Ton
41.54
75.68
58.61
$228.58
$228.58
Costs
$749.08
$749.08
Profit
$58.46
$594.71
Administrative & License %
2
$16.15
$26.88
NET
$42.31
$567.84
Capacity
Acres
Tons Fiber
10 MGY Facility
68,376
66,667
Annual
$2,893,256
$38,826,590
25 MGY Facility
170,940
166,667
Profits
$7,233,141
$97,066,474
Total Admin & License
$1,104,333
$4,594,167
Capital costs not included. Estimated capital costs are $135 to $150 million per facility, plus crop payments. To add a pulping operation will require an additional $100 million and adds $117 per ton of fiber processed for pulp, which has a market value of up to $2,500 per ton. The most conservative estimates possible were used for this study. A full-scale feasibility study is needed to validate assumptions and projections. An additional $35 per ton environmental impact benefit should also be factored into future projections[xv].


Economic Impact

Employment

Employment for hemp production, calculated at one worker per 40 acres farmed[xvi], results in a total of 1,700 to 4,275 new jobs, if 10% of California’s cropland is put into production of cannabis hemp. These jobs are created across all traditional agricultural employment sectors, upon full development of the system.
The processing plants will also create new jobs in these areas[xvii]:
·      Administrative & Sales – 15 to 25 per facility
·      Research & Development – 25 to 50 statewide
·      Engineering & Technical – 75 to 100 statewide
·      Construction & Maintenance – 150 to 300 statewide
·      Transportation & Material Handling – 10 to 20 per facility
·      General Labor – 25 to 50 per facility

Construction

Each facility will incur $100-300 million in construction costs. Much of the equipment and labor will be procured locally, creating new jobs and opportunities for entrepreneurs to provide equipment and services to this new industry.

Related agricultural activities

At an average cost of $520 per acre, returns to farmers will range from $50-$500 profit per acre. Used in rotation with other crops, hemp can help reduce herbicide use resulting in savings to the farmer on production of crops other than hemp.

Environmental Impact

There are a great number of environmental impacts to be considered, including;
·      Water use. Agricultural operations & processing will consume hundreds of millions of gallons.
·      Large mono-crop systems have been problematic. Though hemp lends itself well to mono-cropping, effective & feasible rotation schemes must be devised.
·      Genetically Modified Organisms – Are key to efficient conversions but may pose a great threat to life. This is an issue that must be handled with complete transparency & integrity.
·      Waste streams generated – Though expected to be low, a detailed accounting must be made and addressed.
·      Creation of “Carbon Sink” to absorb carbon
·      Improved land and water management
·      In-State fuel production – reducing transport costs and associated effects
·      Reduction in emissions (Continued use of RFG)
·      $35 per acre total environmental benefit



[i] Community Power Corporation, 8420 S. Continental Divide Road, Littleton, CO 80127
[ii] Corporation For Future Resources, !909 Chowkeebin Court, Tallahassee, Florida 32301
[iii] Ontario Ministry of Agriculture, Food and Rural Affairs FactSheet “Growing Industrial Hemp in Ontario” 08/00
[iv] A Brief Analysis of the Characteristics of Industrial Hemp (Cannabis sativa L.) Seed Grown in Northern Ontario in 1998. May 19, 1999 Herb A. Hinz, Undergraduate Thesis, Lakehead University, Thunder Bay, Ontario
[v] IAN S. WATSON, AIA BioDiesel Expert
Lawrence Livermore National Laboratory
[vi] CIFAR Conference XIV, “Cracking the Nut: Bioprocessing Lignocellulose to Renewable Products and Energy”, June 4, 2001
[vii] California Energy Commission report “COSTS AND BENEFITS OF A BIOMASS-TO-ETHANOL PRODUCTION INDUSTRY IN CALIFORNIA”, March, 2001
[viii] California Energy Commission report “EVALUATION OF BIOMASS-TO-ETHANOL FUEL POTENTIAL IN CALIFORNIA”, December, 1999 pg iv 4-5
[ix] Switchgrass is the leading candidate under consideration by DOE. Numerous studies are available upon request.
[x] Cannabis Sativa, commonly know as “hemp” is included in a list of potential field crops considered as Candidate Energy Crops in the December 1999 California Energy Commission report “EVALUATION OF BIOMASS-TO-ETHANOL FUEL POTENTIAL IN CALIFORNIA” pg. iv-3
[xi] Hemp Pulp and Paper Production Gertjan van Roekel jr.
ATO-DLO Agrotechnology, P.O.box 17, 6700 AA Wageningen, The Netherlands
Van Roekel, G J, 1994. Hemp pulp and paper production. Journal of the International Hemp Association 1: 12-14.
[xii] Fuel and Fiber Company was formed to promote a renewable resource system using fibrous crops such as hemp and kenaf to produce high-value natural fiber, ethanol and other co-products. www.FuelandFiber.com
[xiii] All of the hemp fibre produced and sold by Hempline (www.hempline.com) is made from hemp grown without pesticides and processed without chemicals. The fibre is a uniform natural golden colour typical of field retted stalks. The fibre has a moisture regain of 12% and excellent fibre tenacity. The fibre is pressed into high compression bales to minimize transportation costs.
The fibre is available in 40ft. and 20 ft. containers, truckloads or by the bale and shipped internationally. Samples of the fibre are available for trials upon request. The pricing varies based on the fibre grade, and is comparable or more cost effective than many natural and synthetic fibres.
Hempline primary hemp fibre comes in the following grades:
Ultra clean Grade Fibre
·       99.9% clean of core fibre Value: .55 + lb.
·       Dust extracted
·       Available in staples lengths between 1/2″ to 6″ and sliver.
·       Well opened with a typical staple denier of between 15 to 65
·       Applications include: nonwovens, composites, textiles, any where that a very clean well opened fibre with uniform staple length is needed.
Composite Grade Fibre
·       96 – 99% clean of core fibre Value: .35 – .55 lb.
·       Dust extracted
·       Available in staples lengths between 1″ to 6″.
·       Fairly well opened with a typical staple denier of between 50 to 125
·       Applications include: a range of composites such as automotive, furniture and construction; nonwovens; insulation.
General Purpose Grade Fibre Value: .20 lb.
·       50 – 75% clean of core fibre
·       Staple lengths vary between 1″ to 6″. Can be modified according to your requirements
·       Applications include: fibre for hydro mulch; cement and plaster filler; insulation; geo-matting.
Core fibre
For animal bedding and garden mulch, under the HempChips(tm) brand, is available in 3.2 cu. ft. (90 L) compressed bags through retail outlets and direct-to-stable in truckload quantities.
[xiv] Based on 20% improvement over Canadian production per Ontario Ministry of Agriculture, Food and Rural Affairs Factsheet “Growing Industrial Hemp in Ontario”, 08/00
[xv] DOE calculation – See Chariton Valley project reports.
[xvi] California Agricultural Employment Report
[xvii] Estimate only. Actual numbers need to be discovered and confirmed.

HEMP BIOMASS FOR ENERGY with New Farm Bill

HEMP BIOMASS FOR ENERGY
RV3
Tim Castleman
© Fuel and Fiber Company, 2001, 2006


Table of Contents

Table of Contents_____________________________________________________________ 2
Introduction_________________________________________________________________ 3
Ways biomass can be used for energy production____________________________________ 3
Burning:_________________________________________________________________________________ 3
Oils:____________________________________________________________________________________ 3
Conversion of cellulose to alcohol:____________________________________________________________ 4
About Hemp_________________________________________________________________ 5
Hemp seed oil for Bio Diesel____________________________________________________ 5
Production of oil__________________________________________________________________________ 5
Production of Bio-Diesel____________________________________________________________________ 5
Hemp Cellulose for Ethanol_____________________________________________________ 6
Forest Thinning and Slash, Mill Wastes________________________________________________________ 6
Agricultural Waste_________________________________________________________________________ 7
MSW (Municipal Solid Waste)______________________________________________________________ 7
Dedicated Energy Crops_____________________________________________________________________ 8
Barriers__________________________________________________________________________________ 8
Benefits_________________________________________________________________________________ 8
The Fuel and Fiber Company Method_____________________________________________ 9
Hemp Biomass Production Model Using the Fuel and Fiber Company Method_______________________ 10
Economic Impact____________________________________________________________ 11
Employment_____________________________________________________________________________ 11
Construction_____________________________________________________________________________ 11
Related agricultural activities________________________________________________________________ 11
Environmental Impact________________________________________________________ 11
Endnotes & References_______________________________________________________ 12


Hemp as Biomass for Energy

Introduction

Hemp advocates claim industrial hemp would be a good source of biomass to help address our energy needs. Since the oil crisis in the early seventies much work has been accomplished in the area of energy production using biomass. Biomass is any plant or tree matter in large quantity. These decades of research have lead to the discovery of several ways to convert biomass into energy and other useful products.
Questions of biomass suitability as compared to other “green” sources of energy are the subject of numerous studies and are not addressed here. Other questions concerning detailed economic and environmental impact, use of GMO’s, and agronomy are also outside the scope of this analysis.
This paper does attempt to explore the options available, and outlines some of the barriers and opportunities regarding them.

Ways biomass can be used for energy production

Burning:

·      Co-fired with coal to reduce emissions and offset a fraction of coal use
·      Burned to produce electricity
·      Pelletized to heat structures
·      Made or cut into logs for heating
Biomass to be burned is typically valued at $30-50 per ton, which makes whole stalk hemp as biomass to be burned impractical due to the high value of its bast fiber. One exception may be found in consideration of the latest gasification technologies used on local small scale and in remote rural applications.
·      Gasification (Pyrrolysis)
Gasification uses high heat to convert biomass into “SynGas” (synthetic gas) and low grade fuel oil which has an energy content of about 40% that of petroleum diesel. By products are mostly “Char” and ash. This technology is readily available commercially in several forms and could be a viable option according to local environmental and economic conditions. Beginning in 1999, Community Power Corporation[i] joined with the US National Renewable Laboratory (NREL) and Shell Renewables, Ltd. to design and develop a new generation of small modular biopower systems. The first prototype SMB system rated at 15 kWe was deployed in the village of Alaminos in the Philippines in early 2001. The fully automated system can use a variety of biomass fuels to generate electricity, shaft power and heat.

Oils:

·      Vegetable, seed and plant oil used “as-is” in diesel engines
·      Biodiesel – vegetable oil converted by chemical reaction
·      Converted into high-quality non-toxic lubricants
There are a number of plants high in oils, and many processes that produce vegetable oil as a waste product. These include soy, corn, coconut, palm, canola, rapeseed, and a number of other promising species. Any of these oils can be converted to biodiesel as described later, with a feedstock cost of $0 + per gallon.

Conversion of cellulose to alcohol:

·      Hydrolysis (Enzymatic & Acid)
Conversion of cellulose to fermentable glucose holds the greatest promise from both a production and feedstock supply standpoint. DOE (NREL) and a number of Universities and private enterprise have been developing this technology and achieved a number of milestones. Production estimates of 80 to 130 gallons per ton of biomass make this technology very attractive.
·      Anaerobic digester (Methane)
Anaerobic digestion is used to capture methane from any waste material. It is confirmed technology under commercialization utilizing landfill gases, wastewater treatment system gases, agricultural wastes from several other sources, particularly hog and cattle manure. It is well suited for distributed power generation when co-located with electrical generation equipment. For example, Corporation for Future Resources[ii] and Minusa Coffee Company, Ltd., located near Itaipé, Minas Gerais, Brazil, have teamed to construct an anaerobic fermentation digestion facility at Minusa’s coffee operation. The 600 cubic meter digester is designed to continuously produce methane rich gas, to be used for coffee drying and electric power production, as well as nitrogen-rich anaerobic organic fertilizer.

CFR/Minusa Anaerobic digester in Brazil.
The digester is constructed from native granite blocks quarried at the Minusa site.

 

File written by Adobe Photoshop® 4.0

This technology may be attractive in some cases when co-located with a hemp fiber processing facility or in remote locations to provide local power generation.


About Hemp

Industrial hemp can be grown in most climates and on marginal soils. It requires little or no herbicide and no pesticide, and uses less water than cotton. Measurements at Ridgetown College indicate the crop needs 300-400 mm (10-13 in.) of rainfall equivalent. Yields will vary according to local conditions and will range from 1.5 to 6 dry tons of biomass per acre[iii]. California’s rich croplands and growing environment are expected to increase yields by 20% over Canadian results, which will average at least 3.9 bone dry tons per acre.

Hemp seed oil for Bio Diesel

Production of oil

Grown for oilseed, Canadian grower’s yields average 1 tonne/hectare, or about 400 lbs. per acre. Cannabis seed contains about 28% oil (112 lbs.), or about 15 gallons per acre. Production costs using these figures would be about $35 per gallon. Some varieties are reported[iv] to yield as much as 38% oil, and a record 2,000 lbs. per acre was recorded in 1999. At this rate, 760 lbs.of oil per acre would result in about 100 gallons of oil, with production costs totaling about $5.20 gallon. This oil could be used as-is in modified diesel engines, or be converted to biodiesel using a relatively simple, automated process. Several systems are under development worldwide designed to produce biodiesel on a small scale, such as on farms using “homegrown” oil crops.

Production of Bio-Diesel

Basically methyl esters, or biodiesel, as it is commonly called, can be made from any oil or fat, including hemp seed oil. The reaction requires only oil, an alcohol (usually methanol) and a catalyst (usually sodium hydroxide [NaOH, or drain cleaner]). The reaction produces only biodiesel and a smaller amount of glycerol or glycerin.

The costs of materials needed for the reaction are the costs associated with production of hemp seed oil, the cost of methanol and the NaOH. In the instances where waste vegetable oil, or WVO, is used, the cost for oil is of course, free. Typically methanol costs about $2 per gallon and NaOH costs about $5 per 500g or about $0.01 per gram. For a typical 17 gallon batch of biodiesel, you’d start with 14 gallons of hemp seed oil; add to that 15% by volume of alcohol (or 2.1 gallons) and about 500g of NaOH. The process takes about 2 hours to complete and requires about 2000 watts of energy. That works out to about 2kw/hr or about $0.10 of energy (assuming $0.05 per kw/hr). So the total cost per gallon of biodiesel is $? (oil) + 2.1 x $2 (methanol) + $5 (NaOH) + $0.10 (energy) / 14 gallons = $0.66 per gallon, plus the cost of the oil.[v] Other costs may include sales, transportation, maintenance, depreciation, insurance and labor.


Hemp Cellulose for Ethanol

Another approach will involve conversion of cellulose to ethanol, which can be done in several ways including gasification, acid hydrolysis and a technology utilizing engineered enzymes to convert cellulose to glucose, which is then fermented to make alcohol. Still another approach using enzymes will convert cellulose directly to alcohol, which leads to substantial process cost savings.
Current costs associated with these conversion processes are about $1.37[vi] per gallon of fuel produced, plus the cost of the feedstock. Of this $1.37, enzyme costs are about $0.50 per gallon; current research efforts are directed toward reduction of this amount to $0.05 per gallon. There is a Federal tax credit of $0.54 per gallon and a number of other various incentives available. Conversion rates range from a low of 25-30 gallons per ton of biomass to 100 gallons per ton using the latest technology.
In 1998 the total California gasoline demand was 14 billion gallons. When ethanol is used to replace MTBE as an oxygenate, this will create California demand in excess of 700 million gallons per year. MTBE is to be phased out of use by 2003 according to State law.
In this case we can consider biomass production from a much broader perspective. Sources of feedstock under consideration for these processes are:

We will address these in turn and show why a dedicated energy crop holds important potential for ethanol production in California, why hemp is a good candidate as a dedicated energy crop, and how it may represent the fastest track to meeting 34% of California’s upcoming ethanol market demand of at least 580-750 million gallons per year.[vii]

Forest Thinning and Slash, Mill Wastes

A 1999 California Energy Commission biomass resource assessment estimated 13.8 million bone dry tons (5.5 Mill, 4.5 Slash & 3.8 thinnings) are available in California.
If practiced within State & Federal regulations, use of this source can have significant beneficial effects. Removal of excess biomass from forests reduces the frequency & intensity of fires, helping control the spread of diseases, and contributes to overall forest health. At 59 – 66 gallons per ton, this could supply as much as 900 million gallons per year.
One proposed California project, Collins Pine’s Chester Mill, which will contribute 20 MGY and be co-located with an existing biomass-powered 12 MW electric generator; yet, there is significant resistance to such uses by several prominent environmental groups, and for good reason – this could eventually lead to widespread destruction of forest habitat by overzealous energy companies willing to disregard the environment in the name of national energy security. Barriers also include harvest cost and capabilities as some slash & thinnings are extremely difficult to access, and the high lignin content of these materials.
If 25% of the available material were used, about 200 million gallons per year could be produced.

Agricultural Waste

In California over 500,000 acres of rice are grown each year. Each acre produces 1-2.5 tons of rice straw which have been until now burned. Alternative methods of disposal are needed, and conversion to ethanol has been under development for several years. There are currently two projects underway proposing to use rice straw: one in California (Gridley) and one in Jennings, LA. If the Gridley project is fully implemented, it will add 25 million gallons of production to California’s already-thin 9 million gallons per year. Barriers include collection costs and the high silica content (13%) of rice straw.
Other agricultural wastes include orchard trimmings, walnut and almond shells, and food processing wastes, for a total of about 700 MGY potential if ALL agricultural wastes were used. This is, of course, impractical, as some must be returned to the soil somehow, plus collection and transport costs will have an effect on viability of a particular waste product. Agricultural waste has the potential to satisfy a significant share of demand, with many factors to be considered when proposing a bio-refinery based on any feedstock, which are determined by full life-cycle analysis.
If 25% of the available material were used, about 175 million gallons per year could be produced.

MSW (Municipal Solid Waste)

Though about 60% of the waste stream is cellulosic material such as yard trimmings, urban waste and paper, this source is not considered a viable option for a number of reasons; these include existing industries that recycle materials and the landfill’s use of green waste as “Alternative Daily Cover” (ADC). Co-location of ethanol production is possible, but only up to about 10 MGY of production. When capital investment is considered, it is generally considered most economical to build larger capacity facilities.
The future of MSW being used for ethanol conversion does not look good. At best, 100 MGY of capacity may eventually come online, but it will be an uphill struggle to compete with higher value uses already in place.



Dedicated Energy Crops

There are 28 million acres of agricultural land in California, of which 10 million acres are established cropland. If 10% of this cropland (1 million acres) were dedicated to production of hemp as an energy and fiber crop, we could produce 150-500 million gallons of ethanol per year.
Greater estimates would result from expanding the analysis to include use of agricultural lands not currently applied to crop production as well as additional land not currently devoted to agriculture. A California Department of Food and Agriculture estimate suggests that each 1 million acres of crop production, occupying roughly 1% of the state’s total land area, would supply the ethanol equivalent of about 3% of California’s current gasoline demand.[viii]

Barriers

A barrier to the development of a cellulose-to-ethanol industry is availability, consistency and make-up, and location of feedstock. Dedicated crops, such as switchgrass[ix], resolve these problems. Cannabis hemp will enhance business opportunities because we can “tailor” the cannabis plant fractions to satisfy multiple end uses such as high value composites, fine paper, nitrogen rich fertilizer, CO2 , medicines, plastics, fabrics and polymers – just a portion of the many possible end uses.

Benefits

Benefits of a dedicated energy crop include consistency of feedstock supply, enhanced co-product opportunities, and increased carbon sequestration. It is commonly held that agricultural industries must focus on multiple value-added products from the various fractions of plants. This value-adding enhances rural development by providing jobs and facilities for value-adding operations. Hemp[x] lends itself to this in a unique way due to the high value of its bast fiber. Market prices for well-cleaned, composite-grade natural fiber are about 55¢ per pound ($1,100 ton); lower value uses, such as in some paper-making, bring $400-$700 per ton, while other value-adding options, such as pulping for fine papers[xi], could increase the value of the fiber to $2,500 per ton.

The Fuel and Fiber Company Method

The Fuel and Fiber Company Method[xii] employs a mechanical separation step to extract the high-value bast fiber[xiii] as a first step in processing. The remaining core material is to undergo conversion to alcohol and other co-products. There is no waste stream and the system will provide a net carbon reduction due to increased biomass production. Conversion efficiency of hemp core is relative to the lignin, cellulose and hemicellulose content and method used. The following table lists some materials often cited as potential sources of biomass and their chemical make-up. A challenge is conversion of hemicellulose to glucose; yet this challenge has been met recently by Genencor, Arkenol, Iogen, and others. These technologies provide conversion of hemicellulose and cellulose fractions to glucose using cellulase enzymes or acid.
Hemp
Cellulose
Hemicellulose
Lignin
Bast
64.8 %
7.7%
4.3 %
Core
34.5 %
17.8%
20.8 %
Soft Pine
44%
26%
27.8%
Spruce
42%
27%
28.6%
Wheat Straw
34%
27.6%
18%
Rice Straw
32.1%
24.0%
12.5%
Corn Stover
28%
28%
11%
Switchgrass
32.5%
26.4%
17.8%
Chemical composition of Industrial Hemp as compared to other plant matter
Lignin has long been viewed as a problem in the processing of fiber, and detailed studies have revealed numerous methods of removal and degradation; commonly it is burned for process heat and power generation. Advances in gasification and turbine technologies enable on-site power and heat generation, and should be seriously considered in any full-scale proposal. Additionally, by full chemical assay and careful market evaluation numerous co-product and value-adding opportunities exist. Such assay should include a NIRS (Near Infrared Reflectance Spectroscopy) analysis, with as many varieties and conditions of material as can be gathered.
Reductions in lignin achieved by cultivation and harvest techniques, germplasm development and custom enzyme development will optimize processing output and efficiency. Incremental advances in system efficiencies related to these production improvements create a significant financial incentive for investors.
The Fuel and Fiber Company Renewable Resource System will process 300,000 to 600,000 tons of biomass per year, per facility; 25% to 35% of this will be high-value grades of core-free bast fiber. The remaining 65% to 75% of biomass will be used for the conversion process. Each facility will process input from 60,000 to 170,000 acres. Outputs are: Ethanol: 10-25 MGY (Million Gallons per Year), Fiber: 67,000 to 167,000 tons per year, and other co-products; fertilizer, animal feed, etc. to be determined. Hemp production will average 3.9 tons per acre with average costs of $520 per acre.

 

Hemp Biomass Production Model Using the Fuel and Fiber Company Method[xiv]

Min
Max
Average
Improve 20%
Totals
Sell 1
Sell 2
Total 1
Total 2
Tons per Acre
1.5
5
3.25
0.65
3.9
Lbs. Bast
(Separated 90-94%)
750
2500
1625
325
1950
0.35
0.55
$682.50
$1,072.50
Lbs. Hurd
2250
7500
4875
975
5850
Gallons Per Ton
20
80
50
$2.00
$3.00
Gallons Per Acre
146
292.5
438.8
Ethanol costs
Per Gallon
0.92
1.37
1.145
167.46
167.46
Ethanol profit
$125.04
$271.29
Gross
$807.54
$1,343.79
Production Costs
Per Acre
424
617
520.5
$520.50
$520.50
Separation costs
Per Ton
41.54
75.68
58.61
$228.58
$228.58
Costs
$749.08
$749.08
Profit
$58.46
$594.71
Administrative & License %
2
$16.15
$26.88
NET
$42.31
$567.84
Capacity
Acres
Tons Fiber
10 MGY Facility
68,376
66,667
Annual
$2,893,256
$38,826,590
25 MGY Facility
170,940
166,667
Profits
$7,233,141
$97,066,474
Total Admin & License
$1,104,333
$4,594,167
Capital costs not included. Estimated capital costs are $135 to $150 million per facility, plus crop payments. To add a pulping operation will require an additional $100 million and adds $117 per ton of fiber processed for pulp, which has a market value of up to $2,500 per ton. The most conservative estimates possible were used for this study. A full-scale feasibility study is needed to validate assumptions and projections. An additional $35 per ton environmental impact benefit should also be factored into future projections[xv].


Economic Impact

Employment

Employment for hemp production, calculated at one worker per 40 acres farmed[xvi], results in a total of 1,700 to 4,275 new jobs, if 10% of California’s cropland is put into production of cannabis hemp. These jobs are created across all traditional agricultural employment sectors, upon full development of the system.
The processing plants will also create new jobs in these areas[xvii]:
·      Administrative & Sales – 15 to 25 per facility
·      Research & Development – 25 to 50 statewide
·      Engineering & Technical – 75 to 100 statewide
·      Construction & Maintenance – 150 to 300 statewide
·      Transportation & Material Handling – 10 to 20 per facility
·      General Labor – 25 to 50 per facility

Construction

Each facility will incur $100-300 million in construction costs. Much of the equipment and labor will be procured locally, creating new jobs and opportunities for entrepreneurs to provide equipment and services to this new industry.

Related agricultural activities

At an average cost of $520 per acre, returns to farmers will range from $50-$500 profit per acre. Used in rotation with other crops, hemp can help reduce herbicide use resulting in savings to the farmer on production of crops other than hemp.

Environmental Impact

There are a great number of environmental impacts to be considered, including;
·      Water use. Agricultural operations & processing will consume hundreds of millions of gallons.
·      Large mono-crop systems have been problematic. Though hemp lends itself well to mono-cropping, effective & feasible rotation schemes must be devised.
·      Genetically Modified Organisms – Are key to efficient conversions but may pose a great threat to life. This is an issue that must be handled with complete transparency & integrity.
·      Waste streams generated – Though expected to be low, a detailed accounting must be made and addressed.
·      Creation of “Carbon Sink” to absorb carbon
·      Improved land and water management
·      In-State fuel production – reducing transport costs and associated effects
·      Reduction in emissions (Continued use of RFG)
·      $35 per acre total environmental benefit



[i] Community Power Corporation, 8420 S. Continental Divide Road, Littleton, CO 80127
[ii] Corporation For Future Resources, !909 Chowkeebin Court, Tallahassee, Florida 32301
[iii] Ontario Ministry of Agriculture, Food and Rural Affairs FactSheet “Growing Industrial Hemp in Ontario” 08/00
[iv] A Brief Analysis of the Characteristics of Industrial Hemp (Cannabis sativa L.) Seed Grown in Northern Ontario in 1998. May 19, 1999 Herb A. Hinz, Undergraduate Thesis, Lakehead University, Thunder Bay, Ontario
[v] IAN S. WATSON, AIA BioDiesel Expert
Lawrence Livermore National Laboratory
[vi] CIFAR Conference XIV, “Cracking the Nut: Bioprocessing Lignocellulose to Renewable Products and Energy”, June 4, 2001
[vii] California Energy Commission report “COSTS AND BENEFITS OF A BIOMASS-TO-ETHANOL PRODUCTION INDUSTRY IN CALIFORNIA”, March, 2001
[viii] California Energy Commission report “EVALUATION OF BIOMASS-TO-ETHANOL FUEL POTENTIAL IN CALIFORNIA”, December, 1999 pg iv 4-5
[ix] Switchgrass is the leading candidate under consideration by DOE. Numerous studies are available upon request.
[x] Cannabis Sativa, commonly know as “hemp” is included in a list of potential field crops considered as Candidate Energy Crops in the December 1999 California Energy Commission report “EVALUATION OF BIOMASS-TO-ETHANOL FUEL POTENTIAL IN CALIFORNIA” pg. iv-3
[xi] Hemp Pulp and Paper Production Gertjan van Roekel jr.
ATO-DLO Agrotechnology, P.O.box 17, 6700 AA Wageningen, The Netherlands
Van Roekel, G J, 1994. Hemp pulp and paper production. Journal of the International Hemp Association 1: 12-14.
[xii] Fuel and Fiber Company was formed to promote a renewable resource system using fibrous crops such as hemp and kenaf to produce high-value natural fiber, ethanol and other co-products. www.FuelandFiber.com
[xiii] All of the hemp fibre produced and sold by Hempline (www.hempline.com) is made from hemp grown without pesticides and processed without chemicals. The fibre is a uniform natural golden colour typical of field retted stalks. The fibre has a moisture regain of 12% and excellent fibre tenacity. The fibre is pressed into high compression bales to minimize transportation costs.
The fibre is available in 40ft. and 20 ft. containers, truckloads or by the bale and shipped internationally. Samples of the fibre are available for trials upon request. The pricing varies based on the fibre grade, and is comparable or more cost effective than many natural and synthetic fibres.
Hempline primary hemp fibre comes in the following grades:
Ultra clean Grade Fibre
·       99.9% clean of core fibre Value: .55 + lb.
·       Dust extracted
·       Available in staples lengths between 1/2″ to 6″ and sliver.
·       Well opened with a typical staple denier of between 15 to 65
·       Applications include: nonwovens, composites, textiles, any where that a very clean well opened fibre with uniform staple length is needed.
Composite Grade Fibre
·       96 – 99% clean of core fibre Value: .35 – .55 lb.
·       Dust extracted
·       Available in staples lengths between 1″ to 6″.
·       Fairly well opened with a typical staple denier of between 50 to 125
·       Applications include: a range of composites such as automotive, furniture and construction; nonwovens; insulation.
General Purpose Grade Fibre Value: .20 lb.
·       50 – 75% clean of core fibre
·       Staple lengths vary between 1″ to 6″. Can be modified according to your requirements
·       Applications include: fibre for hydro mulch; cement and plaster filler; insulation; geo-matting.
Core fibre
For animal bedding and garden mulch, under the HempChips(tm) brand, is available in 3.2 cu. ft. (90 L) compressed bags through retail outlets and direct-to-stable in truckload quantities.
[xiv] Based on 20% improvement over Canadian production per Ontario Ministry of Agriculture, Food and Rural Affairs Factsheet “Growing Industrial Hemp in Ontario”, 08/00
[xv] DOE calculation – See Chariton Valley project reports.
[xvi] California Agricultural Employment Report
[xvii] Estimate only. Actual numbers need to be discovered and confirmed.

CÁÑAMO BIOMASA PARA LA ENERGÍA

CÁÑAMO BIOMASA PARA LA ENERGÍA
RV3
Tim Castleman
© combustible y fibra Company, 2001 , 2006


Tabla de contenidos

Tabla de Contents_____________________________________________________________ 2
Introduction_________________________________________________________________ 3
La biomasa se puede utilizar formas de energía production____________________________________ 3
Quema :_________________________________________________________________________________ 3
Aceites :____________________________________________________________________________________ 3
Conversión de celulosa en alcohol :____________________________________________________________ 4
Acerca de Hemp_________________________________________________________________ 5
Cáñamo aceite de semilla de Bio Diesel____________________________________________________ 5
La producción de oil__________________________________________________________________________ 5
La producción de Bio-Diesel____________________________________________________________________ 5
El cáñamo de celulosa para Ethanol_____________________________________________________ 6
Bosque Adelgazamiento y Slash, Mill Wastes________________________________________________________ 6
Agrícolas Waste_________________________________________________________________________ 7
RSU (Residuos Sólidos Urbanos )______________________________________________________________ 7
Dedicado Energía Crops_____________________________________________________________________ 8
Barriers__________________________________________________________________________________ 8
Benefits_________________________________________________________________________________ 8
La Compañía de Combustible y de fibra Method_____________________________________________ 9
La biomasa de cáñamo Modelo de Producción Utilizando el Método de combustible y fibra de la empresa _______________________ 10
Económica Impact____________________________________________________________ 11
Employment_____________________________________________________________________________ 11
Construction_____________________________________________________________________________ 11
Relacionados con la agricultura activities________________________________________________________________ 11
Ambientales Impact________________________________________________________ 11
Las notas al final y 12 References_______________________________________________________


Cáñamo Biomasa para la Energía

Introducción

Los defensores del cáñamo reclamo cáñamo industrial podría ser una buena fuente de biomasa para ayudar a resolver nuestras necesidades de energía. Desde la crisis petrolera de los años setenta el trabajo se ha logrado mucho en el área de producción de energía con biomasa. La biomasa es cualquier materia vegetal o de árboles en grandes cantidades. Estas décadas de investigación han llevado al descubrimiento de varias formas de convertir la biomasa en energía y otros productos útiles.
Las preguntas de la idoneidad de la biomasa en comparación con otras fuentes “verdes” de energía son objeto de numerosos estudios y no se tratan aquí. Otras preguntas sobre el impacto económico detallado y ambientales, el uso de los transgénicos, y la agronomía son también fuera del alcance de este análisis.
Este trabajo pretende explorar las opciones disponibles, y se esbozan algunas de las barreras y oportunidades con respecto a ellos.

Biomasa maneras se puede utilizar para la producción de energía

La quema:

·       Co-alimentadas con carbón para reducir las emisiones y compensar una parte de la utilización del carbón
·       Queman para producir electricidad
·       Granulado a las estructuras de calor
·       Hecho o cortado en los registros de la calefacción
La biomasa que se quema es por lo general un valor de $ 30-50 por tonelada, lo que hace que el cáñamo tallo toda la biomasa que se quema poco práctico debido al alto valor de su fibra basta. Una excepción se puede encontrar en la consideración de las últimas tecnologías de gasificación utilizado en pequeña escala local y en remoto las aplicaciones rurales.
·       Gasificación ( Pyrrolysis )
Gasificación utiliza calor para convertir la biomasa en “syngas” (gas sintético) y el aceite combustible de bajo grado, que tiene un contenido energético de los que alrededor del 40% de diesel de petróleo. Los productos son en su mayoría “Char” y cenizas. Esta tecnología está disponible comercialmente en varias formas y pueden ser una opción viable de acuerdo a las condiciones ambientales y económicos. A partir de 1999, la Corporación de Energía de la Comunidad [i] se unieron a los EE.UU. National Renewable Laboratory (NREL) y Shell Renovables, SA de CV o diseñar y desarrollar una nueva generación de pequeños sistemas modulares biopoder. El primer prototipo de sistema SMB nominal de 15 kWe se desplegó en la localidad de Alaminos en Filipinas a principios de 2001. El sistema totalmente automatizado puede usar una variedad de combustibles de biomasa para generar electricidad, potencia en el eje y el calor.

Aceites:

·       Aceite vegetal, semillas y plantas utilizadas “tal cual” en los motores diesel
·       Biodiesel – aceite vegetal convertidos por la reacción química
·       Convertido en alta calidad no tóxico lubricantes
Hay una serie de plantas de alto contenido de aceite, y muchos de los procesos que producen el aceite vegetal como producto de desecho. Estos incluyen soja, maíz, coco, palma, canola, semilla de colza, y un número de otras especies promisorias. Cualquiera de estos aceites pueden ser convertidos en biodiesel como se describe más adelante, con un costo de materia prima de $ 0 + por galón.

Conversión de celulosa en alcohol:

·       Hidrólisis (enzimática y ácida)
Conversión de la celulosa en glucosa fermentable tiene la mayor promesa, tanto desde el punto de vista de la producción y el suministro de materia prima. DOE (NREL) y un número de universidades y empresas privadas han estado desarrollando esta tecnología y ha logrado una serie de hitos. Las estimaciones de producción de 80 a 0 litros por tonelada de biomasa que esta tecnología muy atractivo .
·       Digestor anaeróbico (Methan )
La digestión anaeróbica se utiliza para capturar metano de cualquier material de desecho. Se confirma la utilización de la tecnología en la comercialización de gases de vertedero, gases de sistema de tratamiento de aguas residuales, desechos agrícolas de diversas fuentes, especialmente de cerdo y estiércol de ganado. Es muy adecuado para la generación de energía distribuida, cuando co-ubicada con eléctrico equipos de generación. Por ejemplo, Corporación de los recursos futuros , [ii] y la Compañía Minusa Café, SA de CV, ubicada cerca de Itaipé, Minas Gerais, Brasil, se han unido para construir una instalación de fermentación de la digestión anaerobia en la operación de café Minusa. El resumen de 600 metros cúbicos r está diseñado para producir continuamente gas metano rico, que se utilizará para secar el café y la producción de energía eléctrica, así como fertilizante rico en nitrógeno orgánico anaerobia .
CFR / Minusa digestor anaerobio en Brasil.
El digestor se construye a partir de bloques de granito nativa extraída en el lugar de Minusa.

Archivo escrito por Adobe Photoshop ® 4.0

Esta tecnología puede ser atractiva en algunos casos, cuando co-ubicada con un centro de procesamiento de la fibra de cáñamo o en localidades remotas para ofrecer la generación de energía locales.


Acerca de cáñamo

El cáñamo industrial se puede cultivar en la mayoría de los climas y suelos marginales. Se requiere poco o nada de herbicidas y pesticidas que no, y utiliza menos agua que el algodón. Las mediciones realizadas en Ridgetown Colegio indicar el cultivo necesita 300-400 mm (10-13 pulgadas) de lluvia equivalente. Los rendimientos varían de acuerdo a las condiciones locales y rango de 1.5 a 6 toneladas secas de biomasa por hectárea [iii] . Tierras de cultivo rico de California y el medio ambiente cada vez se espera que aumenten los rendimientos en un 20% sobre los resultados de Canadá, que tendrá un promedio de al menos 3,9 toneladas de hueso seco por hectárea.

Cáñamo aceite de semilla de Bio Diesel

La producción de aceite

Crecido de las semillas oleaginosas, los rendimientos productor canadiense promedio de 1 tonelada / hectárea, o sea alrededor de 400 lbs. por hectárea. De semillas de cannabis contiene un 28% de aceite (112 lbs.), O alrededor de 15 galones por acre. Los costos de producción utilizando estas cifras sería alrededor de $ 35 por galón. Algunas variedades son reportados [iv] para producir tanto petróleo como el 38%, y un registro de 2.000 libras. por hectárea se registró en 1999. A este ritmo, 760 de aceite por hectárea lbs.of se traduciría en unos 100 galones de petróleo, con los costos de producción total de alrededor de 5,20 dólares por galón. Este aceite puede ser utilizado tal cual en los motores diesel modificados, o se convertirán en biodiesel mediante un relativamente simple, proceso automatizado. Existen varios sistemas en todo el mundo de desarrollo diseñado para producir biodiesel a pequeña escala, como en las fincas el uso de “cosecha propia” los cultivos de aceite.

La producción de Bio-Diesel

Básicamente, los ésteres de metilo, o biodiesel, como se le llama comúnmente, se puede hacer de cualquier aceite o grasa, como aceite de semilla de cáñamo. La reacción requiere sólo de petróleo, un alcohol (generalmente metanol) y un catalizador (generalmente hidróxido de sodio [NaOH o drenaje limpio]). La reacción sólo produce biodiesel y una menor cantidad de glicerol o glicerina. 
Los costos de los materiales necesarios para la reacción son los costos asociados con la producción de aceite de semillas de cáñamo, el costo de metanol y NaOH al. En los casos en que se utiliza aceite vegetal usado, o WVO, el costo del petróleo es, por supuesto, gratis. Por lo general los costos de metanol cerca de $ 2 por galón y NaOH cuesta alrededor de $ 5 por 500 gramos o alrededor de 0,01 dólares por gramo. Para un típico lote de 17 galones de biodiesel, que empezaría con 14 galones de aceite de semilla de cáñamo, añadir que el 15% en volumen de alcohol (o 2.1 galones) y 500 g de NaOH. El proceso toma alrededor de 2 horas para completar y requiere alrededor de 2000 vatios de energía. Eso equivale a alrededor de 2kw/hr o alrededor de $ 0,10 de la energía (suponiendo que $ 0.05 por kw / h). Por lo que el costo total por cada galón de biodiesel es de $? (Aceite) + 2.1 x $ 2 (metanol) + $ 5 (NaOH) + $ 0.10 (energía) / 14 galones = 0,66 dólares por galón, más el costo del petróleo. [v] Otros costos puede incluyen las ventas, transporte, mantenimiento, amortización, seguros y mano de obra. 


El cáñamo de celulosa para etanol

Otro método implica la conversión de la celulosa en etanol, que se puede hacer de varias maneras, incluyendo la gasificación, hidrólisis ácida y una tecnología que utiliza enzimas diseñadas para convertir la celulosa en glucosa, que se fermenta para producir alcohol. Otro enfoque utilizando enzimas convertir la celulosa directamente al alcohol, lo que conduce a importantes ahorros de costes de proceso.
Los gastos corrientes asociados a estos procesos de conversión son de $ 1.37 [vi] por galón de combustible que se produce, más el costo de la materia prima. De estos $ 1,37, los costos de las enzimas son alrededor de $ 0.50 por galón, los actuales esfuerzos de investigación están dirigidas hacia la reducción de esta cantidad a $ 0.05 por galón. Hay un crédito fiscal federal de $ 0.54 por galón y una serie de otros incentivos disponibles. Las tasas de conversión varían desde un mínimo de 25-30 litros por tonelada de biomasa de 100 galones por tonelada utilizando la última tecnología.
En 1998 la demanda total de gasolina de California fue de 14 mil millones de galones. Cuando el etanol se utiliza para reemplazar el MTBE como oxigenante, esto creará una demanda de California en más de 700 millones de galones por año. El MTBE es que eliminarse gradualmente su uso en 2003 de acuerdo con la ley estatal.
En este caso se puede considerar la producción de biomasa a partir de una perspectiva mucho más amplia. Fuentes de materia prima en la consideración de estos procesos son los siguientes:
 
Nos ocuparemos de estas, a su vez y demostrar por qué uno de los cultivos dedicados a fines energéticos tiene un potencial importante para la producción de etanol en California, ¿por qué el cáñamo es un buen candidato como un cultivo energético dedicado, y cómo se puede representar el mejor camino de alcanzar el 34% de etanol próximos California la demanda del mercado de al menos 580-750 million galones por año. [vii]

Bosque Adelgazamiento y Slash, Mill Residuos

A 1999 la Comisión de Energía de California biomasa evaluación de los recursos estimados 13,8 millones de toneladas de hueso seco (5,5 Mill, 4.5 Tala y raleos 3.8) están disponibles en California.
Si se practica dentro de las regulaciones estatales y federales, el uso de esta fuente puede tener efectos beneficiosos significativos. La eliminación de exceso de biomasa de los bosques reduce la frecuencia y la intensidad de los incendios, ayudando a controlar la propagación de enfermedades, y contribuye a la salud de los bosques en general. En 59 a 66 galones por tonelada, esto podría suministrar hasta 900 millones de galones por año.
Una propuesta California proyecto , Mill Collins Pine Chester, lo que contribuirá de 20 mGy y ser colocado con una instalación de biomasa con motor generador de 12 MW de electricidad, sin embargo, existe una resistencia significativa a esos usos por varios grupos ambientalistas prominentes, y por buena razón – esto podría llegar a conducen a la destrucción generalizada del hábitat de los bosques por las compañías de energía exagerada dispuestos a ignorar el medio ambiente en nombre de la seguridad energética nacional. Las barreras incluyen también los costos de cosecha y las capacidades como algunos roza y aclareo son muy difíciles de acceso, y el alto contenido de lignina de estos materiales.
Si el 25% de los materiales disponibles se utilizaron unos 200 millones de galones por año se podrían producir.

De residuos agrícolas

En California, más de 500.000 hectáreas de arroz se cultivan cada año. Cada hectárea produce 1-2.5 toneladas de paja de arroz que se han quemado hasta ahora. Métodos alternativos de eliminación son necesarios, y la conversión a etanol ha estado en desarrollo durante varios años. Actualmente hay dos proyectos en marcha que propone utilizar la paja de arroz, uno en California (Gridley) y uno en Jennings, Louisiana. Si el proyecto Gridley se aplique plenamente, se añaden 25 millones de galones de producción a los ya delgados California 9 millones de galones por año. Las barreras incluyen gastos de recaudación y el alto contenido de sílice (13%) de paja de arroz.
Otros desechos agrícolas incluyen recortes de huerta, cáscaras de nuez y almendra, y los residuos de procesamiento de alimentos, para un total de alrededor de 700 potenciales MGy si todos los desechos agrícolas se utilizaron.Esto es, por supuesto, poco práctico, ya que algunos deben ser devueltos a la tierra de alguna manera, más los gastos de recogida y transporte tendrán un efecto sobre la viabilidad de un producto de desecho en particular. Los residuos agrícolas tienen el potencial para satisfacer una parte significativa de la demanda, con muchos factores a considerar cuando se propone una bio-refinería sobre la base de cualquier materia prima, que son determinados por completo análisis del ciclo vital.
Si el 25% de los materiales disponibles se utilizaron unos 175 millones de galones por año se podrían producir.

RSU (Residuos Sólidos Urbanos)

Aunque alrededor del 60% del flujo de residuos es un material celulósico, como restos de poda, residuos urbanos y el papel, esta fuente no se considera una opción viable para un número de razones, que incluyen las industrias existentes de que los materiales de reciclaje y el uso del vertedero de residuos verdes como “Alternativa Diario Cover” (ADC). La co-localización de la producción de etanol es posible, pero sólo hasta alrededor de 10 mGy de la producción. Cuando la inversión de capital se considera, en general se considera más económico de construir grandes instalaciones de capacidad.
El futuro de los RSU que se utilizará para la conversión de etanol no se ve bien. A lo sumo, 100 mGy de la capacidad puede llegar a entrar en línea, pero será una lucha cuesta arriba para competir con mayor valor ya utiliza en su lugar.


 
Los cultivos dedicados Energía

Hay 28 millones de acres de tierras agrícolas en California, de los cuales 10 millones de hectáreas son tierras de cultivo establecido. Si el 10% de este cultivo (1 millón de hectáreas) se dedica a la producción de cáñamo como la energía y el cultivo de fibra, que puede producir 150-500 million de galones de etanol por año.
Mayor estima que el resultado de ampliar el análisis para incluir el uso de las tierras agrícolas que actualmente no se aplica a la producción de cultivos, así como terrenos adicionales que actualmente no dedicados a la agricultura.Un Departamento de Agricultura y la Alimentación estimación sugiere que cada 1 millón de acres de producción de cultivos, que ocupan aproximadamente el 1% de la superficie del estado total de la tierra, sería el equivalente de suministro de etanol de aproximadamente el 3% de la demanda actual de gasolina de California. [viii]

Barreras

Un obstáculo para el desarrollo de una industria de la celulosa en etanol es la disponibilidad, consistencia y composición, y la ubicación de la materia prima. Cultivos específicos, tales como switchgrass [ix] , resolver estos problemas. Cannabis mejorará las oportunidades de negocio, ya que podemos “adaptar” las fracciones de la planta de cannabis para satisfacer fines múltiples usos, tales como compuestos de alto valor, papel fino, el fertilizante rico en nitrógeno, el CO 2 , medicamentos, plásticos, tejidos y polímeros – sólo una parte de la posible final de muchos usos.

Beneficios

Beneficios de un cultivo energético dedicado incluyen la consistencia del suministro de materia prima, el aumento de las oportunidades de co-producto, y el secuestro de carbono mayor. Se sostiene comúnmente que las industrias agrícola debe enfocarse en varios productos de valor agregado de las diversas fracciones de las plantas. Este valor añadido aumenta el desarrollo rural, proporcionando puestos de trabajo y facilidades para las operaciones de valor añadido. Cáñamo [x] se presta a esto de una manera única debido al alto valor de su fibra basta. Precios de mercado para bien limpia, compuesto de grado fibra natural son aproximadamente el 55 ¢ por libra ($ 1.100 por tonelada), inferior utiliza el valor, como en algunos de fabricación de papel, trae $ 400 – $ 700 por tonelada, mientras que otros de valor agregado opciones, como la fabricación de pulpa para papel fino [xi] , podría aumentar el valor de la fibra a $ 2.500 por tonelada.

El combustible y el método de la Compañía de fibra

El combustible y el método de la Compañía de fibra [xii] emplea una etapa de separación mecánica para extraer el alto valor del líber fibra [xiii] como un primer paso en el proceso. El material del núcleo que queda es someterse a la conversión al alcohol y otras co-productos. No hay flujo de residuos y el sistema proporcionará una reducción neta de carbono debido a la producción de biomasa aumentó. Eficiencia de conversión del núcleo de cáñamo es en relación con el contenido de lignina, celulosa y hemicelulosa y el método utilizado. La siguiente tabla muestra algunos de los materiales a menudo citado como fuentes potenciales de biomasa y su composición química. Un desafío es la conversión de la hemicelulosa de la glucosa, sin embargo, este reto se ha cumplido recientemente por Genencor, Arkenol, Iogen, y otros. Estas tecnologías proporcionan la conversión de las fracciones de la hemicelulosa y la celulosa en glucosa el uso de enzimas celulasas o ácido .
Cáñamo
Celulosa
Hemicelulosa
Lignina
Líber
64,8%
7,7%
4,3%
Núcleo
34,5%
17,8%
20,8%
Pino suave
44%
26%
27,8%
Picea
42%
27%
28,6%
Paja de trigo
34%
El 27,6%
18%
La paja de arroz
32,1%
24,0%
12,5%
Rastrojo de maíz
28%
28%
11%
El pasto switchgrass
32,5%
26,4%
17,8%
Composición química del cáñamo industrial, en comparación con la materia de otras plantas
Lignina siempre ha sido visto como un problema en el procesamiento de la fibra, y estudios detallados han revelado numerosos métodos de eliminación y degradación, normalmente se quema por el calor de proceso y generación de energía. Los avances en las tecnologías de gasificación y de la turbina permitirá en el sitio de alimentación y generación de calor, y deben ser consideradas seriamente en una propuesta a gran escala. Además, al análisis químico completo y una evaluación cuidadosa del mercado numerosos co-productos y oportunidades de valor añadido existentes. Ensayo debe incluir una NIRS (espectroscopia de reflectancia en el infrarrojo cerca) el análisis, con tantas variedades y condiciones de material como pueda ser recogida.
La reducción de la lignina alcanzado por las técnicas de cultivo y la cosecha, el desarrollo de germoplasma y el desarrollo de enzimas personalizados optimizar el proceso de producción y la eficiencia. Avances graduales en la eficiencia del sistema en relación con estas mejoras de producción crean un incentivo importante para los inversores financieros.
El sistema de la compañía de combustible y fibra de Recursos Renovables procesará 300.000 a 600.000 toneladas de biomasa por año, por cada instalación, el 25% a 35% de esto será de gran valor de los grados básicos libres de fibra basta. El restante 65% al 75% de la biomasa se ​​utiliza para el proceso de conversión. Cada instalación será procesar la entrada de 60.000 a 170.000 hectáreas. Las salidas son: Etanol: 10-25 mGy (millones de galones por año), Fibra: 67.000 a 167.000 toneladas por año, y otros co-productos, fertilizantes, piensos, etc que se determine. La producción de cáñamo tendrá un promedio de 3,9 toneladas por hectárea, con costos promedio de $ 520 por acre.

 

La biomasa de cáñamo de producción modelo con el combustible y el método de la Compañía de fibra [xiv]

Min
Max
Promedio
Mejorar un 20%
Totales
Vender un
Venta 2
Un total de 1
Un total de 2
Toneladas por hectárea
1.5
5
3.25
0.65
3.9
Lbs. Líber
(Separados por 90 a 94%)
750
2500
1625
325
1950
0.35
0.55
$ 682.50
$ 1,072.50
Lbs. Hurd
2250
7500
4875
975
5850
Galones por tonelada
20
80
50
$ 2.00
$ 3.00
Galones por acre
146
292,5
438,8
Los costos del etanol
Por galón
0.92
1.37
1.145
167.46
167.46
Etanol ganancias
$ 125.04
$ 271.29
Bruto
$ 807.54
$ 1,343.79
Costos de Producción
Por Acre
424
617
520,5
$ 520.50
$ 520.50
Los costos de separación
Por tonelada
41.54
75.68
58.61
$ 228.58
$ 228.58
Costos
$ 749.08
$ 749.08
Lucro
$ 58.46
$ 594.71
% De gastos administrativos y de licencia
2
$ 16.15
$ 26.88
NET
$ 42.31
$ 567.84
Capacidad
Acres
Toneladas de fibra
10 mGy Fondo
68.376
66.667
Anual
$ 2.893.256
$ 38.826.590
25 MGy Fondo
170940
166667
Beneficios
$ 7.233.141
$ 97.066.474
Administración total y Licencia
$ 1.104.333
$ 4.594.167
Los costos de capital no incluidos. Costos de capital estimados son de $ 135 a $ 150 millones por planta, más los pagos de los cultivos. Para agregar una operación de fabricación de pulpa requiere un adicional de $ 100 millones y agrega $ 117 por tonelada de fibra procesada de la pulpa, que tiene un valor de mercado de hasta 2.500 dólares por tonelada. Las estimaciones más conservadoras posible se utilizaron para este estudio. Un estudio de viabilidad a gran escala es necesaria para validar las hipótesis y proyecciones. Un adicional de $ 35 por tonelada beneficio de impacto ambiental también debe tenerse en cuenta en las proyecciones futuras [xv] .


Impacto económico

Empleo

De empleo para la producción de cáñamo, calculado a un trabajador por cada 40 acres cultivados [xvi] , se traduce en un total de 1.700 a 4.275 nuevos puestos de trabajo, si el 10% de las tierras de cultivo de California se pone en la producción de cáñamo cannabis. Estos trabajos se crean en todos los sectores del empleo agrícola tradicional, en el desarrollo completo del sistema.
Las plantas de procesamiento también creará nuevos puestos de trabajo en estas áreas [xvii] :
·       Las ventas y administrativos – de 15 a 25 por planta
·       Investigación y Desarrollo – 25 a 50 en todo el estado
·       Ingeniería y Técnica – 75 a 100 en todo el estado
·       Construcción y mantenimiento – 150 a 300 en todo el estado
·       Transporte y manipulación de materiales – 10 a 20 instalaciones por
·       General del Trabajo – 25 a 50 por planta

Construcción

Cada instalación incurrirá en $ 100-300 millones de dólares en costos de construcción. Gran parte del equipo y mano de obra se adquirirán a nivel local, la creación de nuevos empleos y oportunidades para los empresarios para proporcionar equipos y servicios para esta nueva industria.

Relacionados con las actividades agrícolas

A un costo promedio de $ 520 por hectárea, los rendimientos de los agricultores van desde $ 50 – $ 500 ganancia por hectárea. Utilizado en rotación con otros cultivos, el cáñamo puede ayudar a reducir el uso de herbicidas resulta en ahorros para el productor a la producción de otros cultivos de cáñamo.

Impacto Ambiental

Hay un gran número de impactos ambientales a ser considerados, incluyendo;
·       El uso del agua. Las operaciones agrícolas y de procesamiento se consumen cientos de millones de galones.
·       Grandes sistemas de monocultivo han sido problemáticos. Aunque el cáñamo se presta bien para el monocultivo, eficaz y viable esquemas de rotación debe ser concebido.
·       Organismos modificados genéticamente – son la clave para conversiones eficiente, pero puede representar una gran amenaza para la vida. Este es un tema que debe ser manejado con total transparencia e integridad.
·       Los flujos de residuos generados – Aunque espera que sea baja, una contabilidad detallada debe ser hecha y dirigida.
·       Creación de “sumidero de carbono” para absorber carbono
·       Mejorada de la tierra y la gestión del agua
·       En el Estado de producción de combustible – la reducción de los costes de transporte y los efectos asociados
·       Reducción de las emisiones (El uso continuado de RFG)
·       $ 35 por acre beneficio ambiental total



[I] de la Comunidad Power Corporation, 8420 S. Carretera División Continental, Littleton, CO 80127
[Ii] Para Corporación recursos en el futuro,! 909 Chowkeebin Corte, Tallahassee, Florida 32301
[Iii] Ontario Ministerio de Agricultura, Alimentación y Asuntos Rurales Hoja Informativa sobre “el cultivo de cáñamo industrial en Ontario” 08/00
[Iv] Un breve análisis de las características de cáñamo industrial (Cannabis sativa L.) de siembra en el norte de Ontario en 1998. 19 de mayo 1999 Hierbas A. Hinz, Tesis de Licenciatura, Universidad de Lakehead, Thunder Bay, Ontario
[V] IAN S. Watson, AIA BioDiesel expertos
Lawrence Livermore National Laboratory
[Vi] Cifar XIV Conferencia, “Cracking the Nut: lignocelulosa bioprocesamiento de productos renovables y la energía”, 04 de junio 2001
[Vii] Informe de la Comisión de Energía de California “COSTOS Y BENEFICIOS DE UNA INDUSTRIA DE PRODUCCIÓN DE BIOMASA PARA ETANOL EN CALIFORNIA”, de marzo de 2001
[Viii] Informe de la Comisión de Energía de California “EVALUACIÓN DE LA BIOMASA a etanol combustible potencial en California”, diciembre de 1999 pg iv 4.5
[Ix] El pasto switchgrass es el principal candidato bajo consideración por el DOE. Numerosos estudios están disponibles bajo petición.
[X] Cannabis Sativa, comúnmente conocida como “cáñamo” está incluido en una lista de cultivos considerados como posibles candidatos en Cultivos Energéticos de diciembre de 1999 de Energía de California informe de la Comisión “Evaluación de la biomasa en etanol combustible potencial en California” pg. IV-3
[Xi] pulpa de cáñamo y papel Producción Gertjan van Roekel jr.
ATO-DLO Agrotecnología, PO Box 17, 6700 AA Wageningen, Países Bajos
Van Roekel, GJ, 1994. Cáñamo producción de pulpa y papel. Revista de la Asociación Internacional de la Marihuana 1: 12-14.
[Xii] de combustible y la Compañía de fibra fue formado para promover un sistema de recursos renovables, el uso de cultivos fibrosos, como el cáñamo y el kenaf para producir fibra de alto valor natural, el etanol y otros co-productos. www.FuelandFiber.com
[Xiii] Todas las fibras de cáñamo, producido y vendido por Hempline (Www.hempline.com) está hecha de cáñamo cultivado sin pesticidas y elaborados sin productos químicos. La fibra es un uniforme de color natural dorado típico de los tallos de campo enriado. La fibra tiene una recuperación de humedad de 12% y la tenacidad de fibra de excelente. La fibra se prensa en fardos de alta compresión para reducir al mínimo los costos de transporte.
La fibra está disponible en 40 pies. y 20 pies contenedores, camiones o por la bala y se envían a nivel internacional. Las muestras de la fibra están disponibles para pruebas sobre la solicitud. El precio varía en función de la fibra de calidad, y tiene un costo comparable o más efectivo que muchas fibras naturales y sintéticas.
Fibra de cáñamo Hempline primaria viene en los siguientes grados:
Grado de fibra ultra limpio
·        99,9% del valor de limpia núcleo de la fibra: £ 0.55 +
·        El polvo extraído
·        Disponible en longitudes de grapas de 1 / 2 “a 6” y astilla.
·        Así se abrió con un negador del típico alimento básico de entre 15 a 65
·        Las aplicaciones incluyen: materiales no tejidos, materiales compuestos, textiles, en cualquier lugar que se necesita una fibra muy limpio y abierto con longitud de grapa uniforme.
Grado de fibra compuesta
·        96 a 99% del valor de limpia núcleo de la fibra: .35 – £ 0.55
·        El polvo extraído
·        Disponible en longitudes de grapas entre 1 “a 6”.
·        Bastante bien se abrió con un negador del típico alimento básico de entre 50 a 125
·        Las aplicaciones incluyen: una gama de compuestos, tales como muebles de automoción y construcción, telas sin tejer; aislamiento.
Uso General Grado de fibra de valor: £ 0.20
·        50 – 75% limpieza de la fibra de núcleo
·        Longitudes varían entre el 1 de primera necesidad “a 6”. Pueden ser modificados de acuerdo a sus necesidades
·        Las aplicaciones incluyen: la fibra de cobertura hidráulica, de cemento y relleno de yeso, aislamiento, geo-estera.
Núcleo de la fibra
Para cama de animales y el mantillo de jardín, bajo la HempChips ™ de la marca, está disponible en 3.2 cu. pies (90 L) comprimido a través de bolsas de tiendas y directa al estable-en cantidades camión.
[Xiv] En base a 20% de mejora de la producción canadiense de Ontario por el Ministerio de Agricultura, Alimentación y Asuntos Rurales Hoja Informativa “Creciendo cáñamo industrial en Ontario”, 08/00
[Xv] DOE cálculo – Ver Chariton Valley informes del proyecto.
[Xvi] Agrícolas de California Informe sobre el Empleo
[Xvii] Estimación solamente. Los números reales deben ser descubierto y confirmado.

Texto original en inglés:
Hemp Biomass for Energy
 Proponer una traducción mejor

CÁÑAMO BIOMASA PARA LA ENERGÍA

http://translate.google.com.mx/translate_un?hl=es&prev=/search%3Fq%3Dcannabis%2Bbiomass%2Bfuel%26hl%3Des%26biw%3D1400%26bih%3D959%26prmd%3Dimvns&rurl=translate.google.com.mx&sl=en&twu=1&u=http://fuelandfiber.com/Hemp4NRG/Hemp4NRGRV3.htm&lang=en&usg=ALkJrhjpJUNm-OuDwjH14ZQIfyNZIwpKiw

CÁÑAMO BIOMASA PARA LA ENERGÍA
RV3
Tim Castleman
© combustible y fibra Company, 2001 , 2006


Tabla de contenidos

Tabla de Contents_____________________________________________________________ 2
Introduction_________________________________________________________________ 3
La biomasa se puede utilizar formas de energía production____________________________________ 3
Quema :_________________________________________________________________________________ 3
Aceites :____________________________________________________________________________________ 3
Conversión de celulosa en alcohol :____________________________________________________________ 4
Acerca de Hemp_________________________________________________________________ 5
Cáñamo aceite de semilla de Bio Diesel____________________________________________________ 5
La producción de oil__________________________________________________________________________ 5
La producción de Bio-Diesel____________________________________________________________________ 5
El cáñamo de celulosa para Ethanol_____________________________________________________ 6
Bosque Adelgazamiento y Slash, Mill Wastes________________________________________________________ 6
Agrícolas Waste_________________________________________________________________________ 7
RSU (Residuos Sólidos Urbanos )______________________________________________________________ 7
Dedicado Energía Crops_____________________________________________________________________ 8
Barriers__________________________________________________________________________________ 8
Benefits_________________________________________________________________________________ 8
La Compañía de Combustible y de fibra Method_____________________________________________ 9
La biomasa de cáñamo Modelo de Producción Utilizando el Método de combustible y fibra de la empresa _______________________ 10
Económica Impact____________________________________________________________ 11
Employment_____________________________________________________________________________ 11
Construction_____________________________________________________________________________ 11
Relacionados con la agricultura activities________________________________________________________________ 11
Ambientales Impact________________________________________________________ 11
Las notas al final y 12 References_______________________________________________________


Cáñamo Biomasa para la Energía

Introducción

Los defensores del cáñamo reclamo cáñamo industrial podría ser una buena fuente de biomasa para ayudar a resolver nuestras necesidades de energía. Desde la crisis petrolera de los años setenta el trabajo se ha logrado mucho en el área de producción de energía con biomasa. La biomasa es cualquier materia vegetal o de árboles en grandes cantidades. Estas décadas de investigación han llevado al descubrimiento de varias formas de convertir la biomasa en energía y otros productos útiles.
Las preguntas de la idoneidad de la biomasa en comparación con otras fuentes “verdes” de energía son objeto de numerosos estudios y no se tratan aquí. Otras preguntas sobre el impacto económico detallado y ambientales, el uso de los transgénicos, y la agronomía son también fuera del alcance de este análisis.
Este trabajo pretende explorar las opciones disponibles, y se esbozan algunas de las barreras y oportunidades con respecto a ellos.

Biomasa maneras se puede utilizar para la producción de energía

La quema:

·       Co-alimentadas con carbón para reducir las emisiones y compensar una parte de la utilización del carbón
·       Queman para producir electricidad
·       Granulado a las estructuras de calor
·       Hecho o cortado en los registros de la calefacción
La biomasa que se quema es por lo general un valor de $ 30-50 por tonelada, lo que hace que el cáñamo tallo toda la biomasa que se quema poco práctico debido al alto valor de su fibra basta. Una excepción se puede encontrar en la consideración de las últimas tecnologías de gasificación utilizado en pequeña escala local y en remoto las aplicaciones rurales.
·       Gasificación ( Pyrrolysis )
Gasificación utiliza calor para convertir la biomasa en “syngas” (gas sintético) y el aceite combustible de bajo grado, que tiene un contenido energético de los que alrededor del 40% de diesel de petróleo. Los productos son en su mayoría “Char” y cenizas. Esta tecnología está disponible comercialmente en varias formas y pueden ser una opción viable de acuerdo a las condiciones ambientales y económicos. A partir de 1999, la Corporación de Energía de la Comunidad [i] se unieron a los EE.UU. National Renewable Laboratory (NREL) y Shell Renovables, SA de CV o diseñar y desarrollar una nueva generación de pequeños sistemas modulares biopoder. El primer prototipo de sistema SMB nominal de 15 kWe se desplegó en la localidad de Alaminos en Filipinas a principios de 2001. El sistema totalmente automatizado puede usar una variedad de combustibles de biomasa para generar electricidad, potencia en el eje y el calor.

Aceites:

·       Aceite vegetal, semillas y plantas utilizadas “tal cual” en los motores diesel
·       Biodiesel – aceite vegetal convertidos por la reacción química
·       Convertido en alta calidad no tóxico lubricantes
Hay una serie de plantas de alto contenido de aceite, y muchos de los procesos que producen el aceite vegetal como producto de desecho. Estos incluyen soja, maíz, coco, palma, canola, semilla de colza, y un número de otras especies promisorias. Cualquiera de estos aceites pueden ser convertidos en biodiesel como se describe más adelante, con un costo de materia prima de $ 0 + por galón.

Conversión de celulosa en alcohol:

·       Hidrólisis (enzimática y ácida)
Conversión de la celulosa en glucosa fermentable tiene la mayor promesa, tanto desde el punto de vista de la producción y el suministro de materia prima. DOE (NREL) y un número de universidades y empresas privadas han estado desarrollando esta tecnología y ha logrado una serie de hitos. Las estimaciones de producción de 80 a 0 litros por tonelada de biomasa que esta tecnología muy atractivo .
·       Digestor anaeróbico (Methan )
La digestión anaeróbica se utiliza para capturar metano de cualquier material de desecho. Se confirma la utilización de la tecnología en la comercialización de gases de vertedero, gases de sistema de tratamiento de aguas residuales, desechos agrícolas de diversas fuentes, especialmente de cerdo y estiércol de ganado. Es muy adecuado para la generación de energía distribuida, cuando co-ubicada con eléctrico equipos de generación. Por ejemplo, Corporación de los recursos futuros , [ii] y la Compañía Minusa Café, SA de CV, ubicada cerca de Itaipé, Minas Gerais, Brasil, se han unido para construir una instalación de fermentación de la digestión anaerobia en la operación de café Minusa. El resumen de 600 metros cúbicos r está diseñado para producir continuamente gas metano rico, que se utilizará para secar el café y la producción de energía eléctrica, así como fertilizante rico en nitrógeno orgánico anaerobia .
CFR / Minusa digestor anaerobio en Brasil.
El digestor se construye a partir de bloques de granito nativa extraída en el lugar de Minusa.

Archivo escrito por Adobe Photoshop ® 4.0

Esta tecnología puede ser atractiva en algunos casos, cuando co-ubicada con un centro de procesamiento de la fibra de cáñamo o en localidades remotas para ofrecer la generación de energía locales.


Acerca de cáñamo

El cáñamo industrial se puede cultivar en la mayoría de los climas y suelos marginales. Se requiere poco o nada de herbicidas y pesticidas que no, y utiliza menos agua que el algodón. Las mediciones realizadas en Ridgetown Colegio indicar el cultivo necesita 300-400 mm (10-13 pulgadas) de lluvia equivalente. Los rendimientos varían de acuerdo a las condiciones locales y rango de 1.5 a 6 toneladas secas de biomasa por hectárea [iii] . Tierras de cultivo rico de California y el medio ambiente cada vez se espera que aumenten los rendimientos en un 20% sobre los resultados de Canadá, que tendrá un promedio de al menos 3,9 toneladas de hueso seco por hectárea.

Cáñamo aceite de semilla de Bio Diesel

La producción de aceite

Crecido de las semillas oleaginosas, los rendimientos productor canadiense promedio de 1 tonelada / hectárea, o sea alrededor de 400 lbs. por hectárea. De semillas de cannabis contiene un 28% de aceite (112 lbs.), O alrededor de 15 galones por acre. Los costos de producción utilizando estas cifras sería alrededor de $ 35 por galón. Algunas variedades son reportados [iv] para producir tanto petróleo como el 38%, y un registro de 2.000 libras. por hectárea se registró en 1999. A este ritmo, 760 de aceite por hectárea lbs.of se traduciría en unos 100 galones de petróleo, con los costos de producción total de alrededor de 5,20 dólares por galón. Este aceite puede ser utilizado tal cual en los motores diesel modificados, o se convertirán en biodiesel mediante un relativamente simple, proceso automatizado. Existen varios sistemas en todo el mundo de desarrollo diseñado para producir biodiesel a pequeña escala, como en las fincas el uso de “cosecha propia” los cultivos de aceite.

La producción de Bio-Diesel

Básicamente, los ésteres de metilo, o biodiesel, como se le llama comúnmente, se puede hacer de cualquier aceite o grasa, como aceite de semilla de cáñamo. La reacción requiere sólo de petróleo, un alcohol (generalmente metanol) y un catalizador (generalmente hidróxido de sodio [NaOH o drenaje limpio]). La reacción sólo produce biodiesel y una menor cantidad de glicerol o glicerina. 
Los costos de los materiales necesarios para la reacción son los costos asociados con la producción de aceite de semillas de cáñamo, el costo de metanol y NaOH al. En los casos en que se utiliza aceite vegetal usado, o WVO, el costo del petróleo es, por supuesto, gratis. Por lo general los costos de metanol cerca de $ 2 por galón y NaOH cuesta alrededor de $ 5 por 500 gramos o alrededor de 0,01 dólares por gramo. Para un típico lote de 17 galones de biodiesel, que empezaría con 14 galones de aceite de semilla de cáñamo, añadir que el 15% en volumen de alcohol (o 2.1 galones) y 500 g de NaOH. El proceso toma alrededor de 2 horas para completar y requiere alrededor de 2000 vatios de energía. Eso equivale a alrededor de 2kw/hr o alrededor de $ 0,10 de la energía (suponiendo que $ 0.05 por kw / h). Por lo que el costo total por cada galón de biodiesel es de $? (Aceite) + 2.1 x $ 2 (metanol) + $ 5 (NaOH) + $ 0.10 (energía) / 14 galones = 0,66 dólares por galón, más el costo del petróleo. [v] Otros costos puede incluyen las ventas, transporte, mantenimiento, amortización, seguros y mano de obra. 


El cáñamo de celulosa para etanol

Otro método implica la conversión de la celulosa en etanol, que se puede hacer de varias maneras, incluyendo la gasificación, hidrólisis ácida y una tecnología que utiliza enzimas diseñadas para convertir la celulosa en glucosa, que se fermenta para producir alcohol. Otro enfoque utilizando enzimas convertir la celulosa directamente al alcohol, lo que conduce a importantes ahorros de costes de proceso.
Los gastos corrientes asociados a estos procesos de conversión son de $ 1.37 [vi] por galón de combustible que se produce, más el costo de la materia prima. De estos $ 1,37, los costos de las enzimas son alrededor de $ 0.50 por galón, los actuales esfuerzos de investigación están dirigidas hacia la reducción de esta cantidad a $ 0.05 por galón. Hay un crédito fiscal federal de $ 0.54 por galón y una serie de otros incentivos disponibles. Las tasas de conversión varían desde un mínimo de 25-30 litros por tonelada de biomasa de 100 galones por tonelada utilizando la última tecnología.
En 1998 la demanda total de gasolina de California fue de 14 mil millones de galones. Cuando el etanol se utiliza para reemplazar el MTBE como oxigenante, esto creará una demanda de California en más de 700 millones de galones por año. El MTBE es que eliminarse gradualmente su uso en 2003 de acuerdo con la ley estatal.
En este caso se puede considerar la producción de biomasa a partir de una perspectiva mucho más amplia. Fuentes de materia prima en la consideración de estos procesos son los siguientes:
 
Nos ocuparemos de estas, a su vez y demostrar por qué uno de los cultivos dedicados a fines energéticos tiene un potencial importante para la producción de etanol en California, ¿por qué el cáñamo es un buen candidato como un cultivo energético dedicado, y cómo se puede representar el mejor camino de alcanzar el 34% de etanol próximos California la demanda del mercado de al menos 580-750 million galones por año. [vii]

Bosque Adelgazamiento y Slash, Mill Residuos

A 1999 la Comisión de Energía de California biomasa evaluación de los recursos estimados 13,8 millones de toneladas de hueso seco (5,5 Mill, 4.5 Tala y raleos 3.8) están disponibles en California.
Si se practica dentro de las regulaciones estatales y federales, el uso de esta fuente puede tener efectos beneficiosos significativos. La eliminación de exceso de biomasa de los bosques reduce la frecuencia y la intensidad de los incendios, ayudando a controlar la propagación de enfermedades, y contribuye a la salud de los bosques en general. En 59 a 66 galones por tonelada, esto podría suministrar hasta 900 millones de galones por año.
Una propuesta California proyecto , Mill Collins Pine Chester, lo que contribuirá de 20 mGy y ser colocado con una instalación de biomasa con motor generador de 12 MW de electricidad, sin embargo, existe una resistencia significativa a esos usos por varios grupos ambientalistas prominentes, y por buena razón – esto podría llegar a conducen a la destrucción generalizada del hábitat de los bosques por las compañías de energía exagerada dispuestos a ignorar el medio ambiente en nombre de la seguridad energética nacional. Las barreras incluyen también los costos de cosecha y las capacidades como algunos roza y aclareo son muy difíciles de acceso, y el alto contenido de lignina de estos materiales.
Si el 25% de los materiales disponibles se utilizaron unos 200 millones de galones por año se podrían producir.

De residuos agrícolas

En California, más de 500.000 hectáreas de arroz se cultivan cada año. Cada hectárea produce 1-2.5 toneladas de paja de arroz que se han quemado hasta ahora. Métodos alternativos de eliminación son necesarios, y la conversión a etanol ha estado en desarrollo durante varios años. Actualmente hay dos proyectos en marcha que propone utilizar la paja de arroz, uno en California (Gridley) y uno en Jennings, Louisiana. Si el proyecto Gridley se aplique plenamente, se añaden 25 millones de galones de producción a los ya delgados California 9 millones de galones por año. Las barreras incluyen gastos de recaudación y el alto contenido de sílice (13%) de paja de arroz.
Otros desechos agrícolas incluyen recortes de huerta, cáscaras de nuez y almendra, y los residuos de procesamiento de alimentos, para un total de alrededor de 700 potenciales MGy si todos los desechos agrícolas se utilizaron.Esto es, por supuesto, poco práctico, ya que algunos deben ser devueltos a la tierra de alguna manera, más los gastos de recogida y transporte tendrán un efecto sobre la viabilidad de un producto de desecho en particular. Los residuos agrícolas tienen el potencial para satisfacer una parte significativa de la demanda, con muchos factores a considerar cuando se propone una bio-refinería sobre la base de cualquier materia prima, que son determinados por completo análisis del ciclo vital.
Si el 25% de los materiales disponibles se utilizaron unos 175 millones de galones por año se podrían producir.

RSU (Residuos Sólidos Urbanos)

Aunque alrededor del 60% del flujo de residuos es un material celulósico, como restos de poda, residuos urbanos y el papel, esta fuente no se considera una opción viable para un número de razones, que incluyen las industrias existentes de que los materiales de reciclaje y el uso del vertedero de residuos verdes como “Alternativa Diario Cover” (ADC). La co-localización de la producción de etanol es posible, pero sólo hasta alrededor de 10 mGy de la producción. Cuando la inversión de capital se considera, en general se considera más económico de construir grandes instalaciones de capacidad.
El futuro de los RSU que se utilizará para la conversión de etanol no se ve bien. A lo sumo, 100 mGy de la capacidad puede llegar a entrar en línea, pero será una lucha cuesta arriba para competir con mayor valor ya utiliza en su lugar.


 
Los cultivos dedicados Energía

Hay 28 millones de acres de tierras agrícolas en California, de los cuales 10 millones de hectáreas son tierras de cultivo establecido. Si el 10% de este cultivo (1 millón de hectáreas) se dedica a la producción de cáñamo como la energía y el cultivo de fibra, que puede producir 150-500 million de galones de etanol por año.
Mayor estima que el resultado de ampliar el análisis para incluir el uso de las tierras agrícolas que actualmente no se aplica a la producción de cultivos, así como terrenos adicionales que actualmente no dedicados a la agricultura.Un Departamento de Agricultura y la Alimentación estimación sugiere que cada 1 millón de acres de producción de cultivos, que ocupan aproximadamente el 1% de la superficie del estado total de la tierra, sería el equivalente de suministro de etanol de aproximadamente el 3% de la demanda actual de gasolina de California. [viii]

Barreras

Un obstáculo para el desarrollo de una industria de la celulosa en etanol es la disponibilidad, consistencia y composición, y la ubicación de la materia prima. Cultivos específicos, tales como switchgrass [ix] , resolver estos problemas. Cannabis mejorará las oportunidades de negocio, ya que podemos “adaptar” las fracciones de la planta de cannabis para satisfacer fines múltiples usos, tales como compuestos de alto valor, papel fino, el fertilizante rico en nitrógeno, el CO 2 , medicamentos, plásticos, tejidos y polímeros – sólo una parte de la posible final de muchos usos.

Beneficios

Beneficios de un cultivo energético dedicado incluyen la consistencia del suministro de materia prima, el aumento de las oportunidades de co-producto, y el secuestro de carbono mayor. Se sostiene comúnmente que las industrias agrícola debe enfocarse en varios productos de valor agregado de las diversas fracciones de las plantas. Este valor añadido aumenta el desarrollo rural, proporcionando puestos de trabajo y facilidades para las operaciones de valor añadido. Cáñamo [x] se presta a esto de una manera única debido al alto valor de su fibra basta. Precios de mercado para bien limpia, compuesto de grado fibra natural son aproximadamente el 55 ¢ por libra ($ 1.100 por tonelada), inferior utiliza el valor, como en algunos de fabricación de papel, trae $ 400 – $ 700 por tonelada, mientras que otros de valor agregado opciones, como la fabricación de pulpa para papel fino [xi] , podría aumentar el valor de la fibra a $ 2.500 por tonelada.

El combustible y el método de la Compañía de fibra

El combustible y el método de la Compañía de fibra [xii] emplea una etapa de separación mecánica para extraer el alto valor del líber fibra [xiii] como un primer paso en el proceso. El material del núcleo que queda es someterse a la conversión al alcohol y otras co-productos. No hay flujo de residuos y el sistema proporcionará una reducción neta de carbono debido a la producción de biomasa aumentó. Eficiencia de conversión del núcleo de cáñamo es en relación con el contenido de lignina, celulosa y hemicelulosa y el método utilizado. La siguiente tabla muestra algunos de los materiales a menudo citado como fuentes potenciales de biomasa y su composición química. Un desafío es la conversión de la hemicelulosa de la glucosa, sin embargo, este reto se ha cumplido recientemente por Genencor, Arkenol, Iogen, y otros. Estas tecnologías proporcionan la conversión de las fracciones de la hemicelulosa y la celulosa en glucosa el uso de enzimas celulasas o ácido .
Cáñamo
Celulosa
Hemicelulosa
Lignina
Líber
64,8%
7,7%
4,3%
Núcleo
34,5%
17,8%
20,8%
Pino suave
44%
26%
27,8%
Picea
42%
27%
28,6%
Paja de trigo
34%
El 27,6%
18%
La paja de arroz
32,1%
24,0%
12,5%
Rastrojo de maíz
28%
28%
11%
El pasto switchgrass
32,5%
26,4%
17,8%
Composición química del cáñamo industrial, en comparación con la materia de otras plantas
Lignina siempre ha sido visto como un problema en el procesamiento de la fibra, y estudios detallados han revelado numerosos métodos de eliminación y degradación, normalmente se quema por el calor de proceso y generación de energía. Los avances en las tecnologías de gasificación y de la turbina permitirá en el sitio de alimentación y generación de calor, y deben ser consideradas seriamente en una propuesta a gran escala. Además, al análisis químico completo y una evaluación cuidadosa del mercado numerosos co-productos y oportunidades de valor añadido existentes. Ensayo debe incluir una NIRS (espectroscopia de reflectancia en el infrarrojo cerca) el análisis, con tantas variedades y condiciones de material como pueda ser recogida.
La reducción de la lignina alcanzado por las técnicas de cultivo y la cosecha, el desarrollo de germoplasma y el desarrollo de enzimas personalizados optimizar el proceso de producción y la eficiencia. Avances graduales en la eficiencia del sistema en relación con estas mejoras de producción crean un incentivo importante para los inversores financieros.
El sistema de la compañía de combustible y fibra de Recursos Renovables procesará 300.000 a 600.000 toneladas de biomasa por año, por cada instalación, el 25% a 35% de esto será de gran valor de los grados básicos libres de fibra basta. El restante 65% al 75% de la biomasa se ​​utiliza para el proceso de conversión. Cada instalación será procesar la entrada de 60.000 a 170.000 hectáreas. Las salidas son: Etanol: 10-25 mGy (millones de galones por año), Fibra: 67.000 a 167.000 toneladas por año, y otros co-productos, fertilizantes, piensos, etc que se determine. La producción de cáñamo tendrá un promedio de 3,9 toneladas por hectárea, con costos promedio de $ 520 por acre.

 

La biomasa de cáñamo de producción modelo con el combustible y el método de la Compañía de fibra [xiv]

Min
Max
Promedio
Mejorar un 20%
Totales
Vender un
Venta 2
Un total de 1
Un total de 2
Toneladas por hectárea
1.5
5
3.25
0.65
3.9
Lbs. Líber
(Separados por 90 a 94%)
750
2500
1625
325
1950
0.35
0.55
$ 682.50
$ 1,072.50
Lbs. Hurd
2250
7500
4875
975
5850
Galones por tonelada
20
80
50
$ 2.00
$ 3.00
Galones por acre
146
292,5
438,8
Los costos del etanol
Por galón
0.92
1.37
1.145
167.46
167.46
Etanol ganancias
$ 125.04
$ 271.29
Bruto
$ 807.54
$ 1,343.79
Costos de Producción
Por Acre
424
617
520,5
$ 520.50
$ 520.50
Los costos de separación
Por tonelada
41.54
75.68
58.61
$ 228.58
$ 228.58
Costos
$ 749.08
$ 749.08
Lucro
$ 58.46
$ 594.71
% De gastos administrativos y de licencia
2
$ 16.15
$ 26.88
NET
$ 42.31
$ 567.84
Capacidad
Acres
Toneladas de fibra
10 mGy Fondo
68.376
66.667
Anual
$ 2.893.256
$ 38.826.590
25 MGy Fondo
170940
166667
Beneficios
$ 7.233.141
$ 97.066.474
Administración total y Licencia
$ 1.104.333
$ 4.594.167
Los costos de capital no incluidos. Costos de capital estimados son de $ 135 a $ 150 millones por planta, más los pagos de los cultivos. Para agregar una operación de fabricación de pulpa requiere un adicional de $ 100 millones y agrega $ 117 por tonelada de fibra procesada de la pulpa, que tiene un valor de mercado de hasta 2.500 dólares por tonelada. Las estimaciones más conservadoras posible se utilizaron para este estudio. Un estudio de viabilidad a gran escala es necesaria para validar las hipótesis y proyecciones. Un adicional de $ 35 por tonelada beneficio de impacto ambiental también debe tenerse en cuenta en las proyecciones futuras [xv] .


Impacto económico

Empleo

De empleo para la producción de cáñamo, calculado a un trabajador por cada 40 acres cultivados [xvi] , se traduce en un total de 1.700 a 4.275 nuevos puestos de trabajo, si el 10% de las tierras de cultivo de California se pone en la producción de cáñamo cannabis. Estos trabajos se crean en todos los sectores del empleo agrícola tradicional, en el desarrollo completo del sistema.
Las plantas de procesamiento también creará nuevos puestos de trabajo en estas áreas [xvii] :
·       Las ventas y administrativos – de 15 a 25 por planta
·       Investigación y Desarrollo – 25 a 50 en todo el estado
·       Ingeniería y Técnica – 75 a 100 en todo el estado
·       Construcción y mantenimiento – 150 a 300 en todo el estado
·       Transporte y manipulación de materiales – 10 a 20 instalaciones por
·       General del Trabajo – 25 a 50 por planta

Construcción

Cada instalación incurrirá en $ 100-300 millones de dólares en costos de construcción. Gran parte del equipo y mano de obra se adquirirán a nivel local, la creación de nuevos empleos y oportunidades para los empresarios para proporcionar equipos y servicios para esta nueva industria.

Relacionados con las actividades agrícolas

A un costo promedio de $ 520 por hectárea, los rendimientos de los agricultores van desde $ 50 – $ 500 ganancia por hectárea. Utilizado en rotación con otros cultivos, el cáñamo puede ayudar a reducir el uso de herbicidas resulta en ahorros para el productor a la producción de otros cultivos de cáñamo.

Impacto Ambiental

Hay un gran número de impactos ambientales a ser considerados, incluyendo;
·       El uso del agua. Las operaciones agrícolas y de procesamiento se consumen cientos de millones de galones.
·       Grandes sistemas de monocultivo han sido problemáticos. Aunque el cáñamo se presta bien para el monocultivo, eficaz y viable esquemas de rotación debe ser concebido.
·       Organismos modificados genéticamente – son la clave para conversiones eficiente, pero puede representar una gran amenaza para la vida. Este es un tema que debe ser manejado con total transparencia e integridad.
·       Los flujos de residuos generados – Aunque espera que sea baja, una contabilidad detallada debe ser hecha y dirigida.
·       Creación de “sumidero de carbono” para absorber carbono
·       Mejorada de la tierra y la gestión del agua
·       En el Estado de producción de combustible – la reducción de los costes de transporte y los efectos asociados
·       Reducción de las emisiones (El uso continuado de RFG)
·       $ 35 por acre beneficio ambiental total



[I] de la Comunidad Power Corporation, 8420 S. Carretera División Continental, Littleton, CO 80127
[Ii] Para Corporación recursos en el futuro,! 909 Chowkeebin Corte, Tallahassee, Florida 32301
[Iii] Ontario Ministerio de Agricultura, Alimentación y Asuntos Rurales Hoja Informativa sobre “el cultivo de cáñamo industrial en Ontario” 08/00
[Iv] Un breve análisis de las características de cáñamo industrial (Cannabis sativa L.) de siembra en el norte de Ontario en 1998. 19 de mayo 1999 Hierbas A. Hinz, Tesis de Licenciatura, Universidad de Lakehead, Thunder Bay, Ontario
[V] IAN S. Watson, AIA BioDiesel expertos
Lawrence Livermore National Laboratory
[Vi] Cifar XIV Conferencia, “Cracking the Nut: lignocelulosa bioprocesamiento de productos renovables y la energía”, 04 de junio 2001
[Vii] Informe de la Comisión de Energía de California “COSTOS Y BENEFICIOS DE UNA INDUSTRIA DE PRODUCCIÓN DE BIOMASA PARA ETANOL EN CALIFORNIA”, de marzo de 2001
[Viii] Informe de la Comisión de Energía de California “EVALUACIÓN DE LA BIOMASA a etanol combustible potencial en California”, diciembre de 1999 pg iv 4.5
[Ix] El pasto switchgrass es el principal candidato bajo consideración por el DOE. Numerosos estudios están disponibles bajo petición.
[X] Cannabis Sativa, comúnmente conocida como “cáñamo” está incluido en una lista de cultivos considerados como posibles candidatos en Cultivos Energéticos de diciembre de 1999 de Energía de California informe de la Comisión “Evaluación de la biomasa en etanol combustible potencial en California” pg. IV-3
[Xi] pulpa de cáñamo y papel Producción Gertjan van Roekel jr.
ATO-DLO Agrotecnología, PO Box 17, 6700 AA Wageningen, Países Bajos
Van Roekel, GJ, 1994. Cáñamo producción de pulpa y papel. Revista de la Asociación Internacional de la Marihuana 1: 12-14.
[Xii] de combustible y la Compañía de fibra fue formado para promover un sistema de recursos renovables, el uso de cultivos fibrosos, como el cáñamo y el kenaf para producir fibra de alto valor natural, el etanol y otros co-productos. www.FuelandFiber.com
[Xiii] Todas las fibras de cáñamo, producido y vendido por Hempline (Www.hempline.com) está hecha de cáñamo cultivado sin pesticidas y elaborados sin productos químicos. La fibra es un uniforme de color natural dorado típico de los tallos de campo enriado. La fibra tiene una recuperación de humedad de 12% y la tenacidad de fibra de excelente. La fibra se prensa en fardos de alta compresión para reducir al mínimo los costos de transporte.
La fibra está disponible en 40 pies. y 20 pies contenedores, camiones o por la bala y se envían a nivel internacional. Las muestras de la fibra están disponibles para pruebas sobre la solicitud. El precio varía en función de la fibra de calidad, y tiene un costo comparable o más efectivo que muchas fibras naturales y sintéticas.
Fibra de cáñamo Hempline primaria viene en los siguientes grados:
Grado de fibra ultra limpio
·        99,9% del valor de limpia núcleo de la fibra: £ 0.55 +
·        El polvo extraído
·        Disponible en longitudes de grapas de 1 / 2 “a 6” y astilla.
·        Así se abrió con un negador del típico alimento básico de entre 15 a 65
·        Las aplicaciones incluyen: materiales no tejidos, materiales compuestos, textiles, en cualquier lugar que se necesita una fibra muy limpio y abierto con longitud de grapa uniforme.
Grado de fibra compuesta
·        96 a 99% del valor de limpia núcleo de la fibra: .35 – £ 0.55
·        El polvo extraído
·        Disponible en longitudes de grapas entre 1 “a 6”.
·        Bastante bien se abrió con un negador del típico alimento básico de entre 50 a 125
·        Las aplicaciones incluyen: una gama de compuestos, tales como muebles de automoción y construcción, telas sin tejer; aislamiento.
Uso General Grado de fibra de valor: £ 0.20
·        50 – 75% limpieza de la fibra de núcleo
·        Longitudes varían entre el 1 de primera necesidad “a 6”. Pueden ser modificados de acuerdo a sus necesidades
·        Las aplicaciones incluyen: la fibra de cobertura hidráulica, de cemento y relleno de yeso, aislamiento, geo-estera.
Núcleo de la fibra
Para cama de animales y el mantillo de jardín, bajo la HempChips ™ de la marca, está disponible en 3.2 cu. pies (90 L) comprimido a través de bolsas de tiendas y directa al estable-en cantidades camión.
[Xiv] En base a 20% de mejora de la producción canadiense de Ontario por el Ministerio de Agricultura, Alimentación y Asuntos Rurales Hoja Informativa “Creciendo cáñamo industrial en Ontario”, 08/00
[Xv] DOE cálculo – Ver Chariton Valley informes del proyecto.
[Xvi] Agrícolas de California Informe sobre el Empleo
[Xvii] Estimación solamente. Los números reales deben ser descubierto y confirmado.

Texto original en inglés:
Hemp Biomass for Energy
 Proponer una traducción mejor

Pemex Oil Output Declines at Fastest Rate Since World War II

Pemex Oil Output Declines at Fastest Rate Since World War II Jan. 20 (Bloomberg) — Petroleos Mexicanos, Mexico’s state oil company, will probably report its fastest drop in production
since 1942, eroding revenue as plunging crude prices limit the amount of cash available to drill for new reserves.

Pemex last year likely extracted 2.8 million barrels a day, down about 9 percent from the 3.08 million a day pumped in 2007, representing a total of $20 billion in lost sales, according to data compiled by the government and Bloomberg. The Mexico City-based company, which had revenue of $104 billion in 2007, plans to report annual production figures tomorrow.

The fall in oil prices and lower production is going to make expensive exploration projects less attractive now.”  Pemex’s “biggest problems have yet to come,” said Alejandro Schtulmann, head of research at Empra, a political-risk consulting firm in Mexico City, in an interview. “The fall in oil prices and lower production is going to make expensive exploration projects less attractive now.”

Sorry for the crude translation:

Salida de Pemex disminución en ritmo más rápido desde la Segunda Guerra MundialPor Andrés R. Martínez – 20 de enero de 2009 01:00 EST
20 de enero (Bloomberg) – Petróleos Mexicanos, la compañía petrolera estatal de México, probablemente reporte su mayor caída en la producción desde 1942, erosionando los ingresos de caída de los precios del crudo limitan la cantidad de efectivo disponible para perforar en busca de nuevas reservas.
Pemex el año pasado probablemente extraído 2,8 millones de barriles al día, hasta un 9 por ciento de los 3,08 millones al día bombea en 2007, lo que representa un total de $ 20 mil millones en ventas perdidas, según datos compilados por el gobierno y Bloomberg. La Ciudad de México basado en la empresa, cuyos ingresos fueron de $ 104 millones en 2007, los planes de la información de cifras de producción anual de mañana.
Caída de la producción está llevando a Pemex en exploración en aguas profundas como estatales Petróleo Brasileiro SA pares en Río de Janeiro y Ecopetrol SA en Bogotá invertir miles de millones para impulsar la producción. Los costos están aumentando en Cantarell, el mayor campo de Pemex, después de la disminución de la presión redujeron la producción en los últimos cinco años. Del petróleo cayeron 77 por ciento desde su récord de julio a 34,08 dólares el barril en Nueva York.
Pemex “mayores problemas aún no han llegado”, dijo Alejandro Schtulmann, jefe de investigación de Empra, una firma consultora de riesgo político en la ciudad de México, en una entrevista. “La caída de los precios del petróleo y la menor producción se va a hacer que los proyectos de exploración cara menos atractiva ahora.”
México cuenta con Pemex el 40 por ciento de su presupuesto. Caída de las ventas puede cortar en la financiación de un 570 mil millones de pesos (US $ 41 millones de dólares) al año del plan de infraestructuras del presidente Felipe Calderón confía en mantener al país fuera de la recesión este año, Schtulmann dijo.
Deslizamiento de salida
Deslizamiento de salida de Pemex riesgos de corte de suministro a los EE.UU., que obtiene más petróleo de México que todos los países excepto Canadá y Arabia Saudita. La menor producción también se presenta como presidente venezolano Hugo Chávez, que ha amenazado con poner fin a los envíos de petróleo a los EE.UU. y se opone a la influencia de EE.UU. en América Latina, celebra un referéndum que pondría fin a los límites del mandato de su presidencia.
Crudo tocó un récord de 147,27 dólares el barril el 11 de julio.
Para compensar la disminución en los campos de envejecimiento, Pemex se centra en aprovechar el petróleo en los mares más allá de 500 metros (1.640 pies), donde el gobierno estima que tiene 30 millones de barriles de petróleo crudo equivalente. Eso sería suficiente para abastecer a los EE.UU. durante cuatro años, de acuerdo con BP Plc.
Descubrimientos en aguas profundas o en tierra firme se encuentra en el campo Chicontepec, puede ayudar a contrarrestar una caída en el campo Cantarell, la tercera mayor del mundo. Pemex está apostando a que puede producir unos 500.000 barriles diarios de Chicontepec, una serie de pequeños depósitos conectados repartidos en estados de Veracruz y Puebla, en el año 2021. El primer pozo en aguas profundas se debe a que entren en funcionamiento en 2015.
La disminución de Cantarell
Para entonces, Cantarell se producen menos de 500.000 barriles diarios de petróleo, director ejecutivo de Jesús Reyes Heroles, dijo el año pasado. Producción en el campo, la caída de más del doble de rápido que las estimaciones del gobierno, cayó a 862.060 barriles diarios en noviembre del año anterior, según datos de la Secretaría de Energía mexicana.
Cantarell, alcanzado en 1976, fue el mayor hallazgo de petróleo en el continente americano hasta el año pasado, cuando Petroleo Brasileiro, conocido como Petrobras, descubrió el yacimiento de Tupi. Pemex estima que Cantarell con 17 mil millones de barriles de petróleo crudo equivalente de reservas cuando se descubrió, en comparación con 8000 millones de barriles de Tupi. Cantarell representa alrededor de un tercio de la producción de Pemex en la actualidad, por debajo del 65 por ciento en su punto máximo en diciembre de 2003.
Petrobras puede gastar $ 112 mil millones hasta 2013 para explorar el llamado pre-sal de los campos que se encuentran costa afuera de Brasil y que incluye Tupi. Ecopetrol de Colombia tiene la intención de aumentar el gasto en un 35 por ciento, a 6,22 mil millones dólares este año para alcanzar un objetivo de casi duplicar la producción de 1 millón de barriles al día.
“Lazy”
Pemex se convirtió en “perezoso” a partir del descubrimiento de Cantarell, basándose en el campo en lugar de centrarse en la exploración durante los próximos 30 años, Carlos Morales, la exploración de la compañía y director de producción, dijo en una entrevista en noviembre.
El Ministerio de Hacienda de México cobertura contra la caída de Pemex en la producción y la caída de los precios mediante la compra de una opción para vender todo su petróleo para la exportación a 70 dólares el barril este año, asegurando financiamiento a corto plazo para el presupuesto del gobierno.
El país no ha permitido a las empresas extranjeras para explorar o producir petróleo en el país desde que Pemex se formó a partir de los bienes expropiados de Chevron Corp. y Exxon Mobil Corp. en 1938. Que ahora puede cambiar después el Congreso aprobó cambios legislativos para la industria en octubre para ayudar a impulsar la producción.
Para contactar con el reportero en esta historia: Andrés R. Martínez en Ciudad de México en amartinez28@bloomberg.net.
Para contactar con el editor responsable de esta historia: Dale Crofts en dcrofts@bloomberg.net

Propuesta Para La Legalización de Cáñamo Industrial en México

¿Qué es el cáñamo?
El cáñamo es una de las primeras plantas domesticadas conocidas por la humanidad. El cáñamo se utiliza sobre todo como un nombre de bajo contenido de tetrahidrocannabinol (THC) de las cepas de la planta Cannabis sativa, de fibra y / o variedades de semillas oleaginosas. Cannabis sativa L. subsp. sativa var. sativa es la variedad que se cultiva para uso industrial, mientras que C. sativa subsp., indica, normalmente conocida como marihuana, por lo general tiene mala calidad de la fibra y se utiliza principalmente para la producción de drogas recreacionales y medicinales.
La principal diferencia entre los dos tipos de plantas es el aspecto y la cantidad de THC secreta en una mezcla resinosa por los pelos epidérmicos llamados tricomas glandulares, aunque también se puede distinguir genéticamente. Variedades de semillas oleaginosas y de fibra de cannabis aprobado para producción a escala industrial sólo producen pequeñas cantidades de esta droga psicoactiva, no es suficiente para los efectos físicos o psicológicos. Por lo general, el cáñamo contiene menos de 0.3% de THC, mientras que los cultivares de cannabis cultivadas de marihuana puede contener entre un 2% a más del 20%.
Hoy en día el cáñamo en el Mundo
Sólo recientemente, en el 1900 fue declarada ilegal en todo el mundo siguiendo el ejemplo de los Estados Unidos. Es irónico teniendo en cuenta que Estados Unidos los presidentes George Washington y Thomas Jefferson, creció el cáñamo, productos usados ​​hechos de cáñamo, e incluso escribió la Constitución de Estados Unidos sobre el cáñamo y bajo la presión de John D. Rockefeller y su imperio del petróleo hizo que los EE.UU. decidan cáñamo peligroso para Estados Unidos y el mundo.
A pesar de ser declarada ilegal en 1937 bajo la Ley del Impuesto sobre la marihuana, el gobierno de EE.UU. hizo una campaña a nivel nacional para cultivar cáñamo para su uso en la Segunda Guerra Mundial. Esa campaña fue llamado Cáñamo para la victoria. Mientras que más de cáñamo se exporta a los Estados Unidos que cualquier otro país, el Gobierno de los Estados Unidos no siempre distingue entre la marihuana y el cannabis no psicoactivo utilizado con fines industriales y comerciales.
Las leyes en los EE.UU. están a punto de cambiar. Desde 19XX, 15 estados de EE.UU. han legalizado la marihuana medicinal y el apoyo popular está creciendo todos los días.Más importante aún, la legislación ha sido presentado al Congreso para su debate por la corriente principal candidato presidentail republicano, Ron Paul. Este proyecto de ley que se conoce como HR 1831, la ley sobre la agricultura del cáñamo de 2011.
En los tiempos modernos, el cáñamo se utiliza para fines industriales, como papel, textiles, plásticos biodegradables, construcción, alimentos saludables, los biocombustibles, la biomasa, que ofrece una alternativa fácil a todos los envrionmentally biproducts petróleo.Hoy en día el líder mundial productor de cáñamo es China, con menor producción en Canadá, Inglaterra, Alemania y naciones de Europa Oriental, Australia, Chile y Corea del Norte.
Reino Unido basado en Lotus comenzó a trabajar un coche a base de cáñamo y lo lanzó a la producción y en Canadá, un automóvil llamado Kestrel se produce la liberación de Industrias motivo en el año 2012 que será un coche eléctrico compuesto de cáñamo y un peso de 2500 libras.
Mercedes Benz de Alemania ha comenzado recientemente a los organismos de fabricación de automóviles y paneles hechos de cáñamo.
¿Por qué cáñamo?
El cáñamo es una de las biomasas de más rápido crecimiento conocida, que produce hasta 25 toneladas de materia seca por hectárea por año. Un rendimiento promedio normal en gran escala de la agricultura moderna es de 2,5-3,5 t / ac (rendimientos de aire seco del tallo de los tallos secos, enriado por acre a humedad del 12%). Aproximadamente, una tonelada de fibra de líber y 2.3 toneladas de material del núcleo puede ser peladas de toneladas 3-4 de buena calidad, paja seca enriado.
Es muy respetuosos del medio ambiente, ya que requiere pocos pesticidas y herbicidas que no. Los resultados indican que un alto rendimiento de cáñamo pueden requerir altos niveles de nutrientes totales (campo más nutrientes de los fertilizantes), similar a una cosecha de trigo de alto rendimiento.
Combustible – A diferencia del petróleo, carbón, gas natural o combustibles nucleares, el cáñamo es un recurso biodegradable y renovable, que nos podría abastecerse de materias primas durante miles de años, sin cambiar nuestro clima y sin producir residuos que sigue siendo radiactivo durante millones de años.
Plásticos – Miles de productos a base de derivados del petróleo de los plásticos pueden ser producidos a partir de compuestos a base de cáñamo para crear sustitutos fuerte, plástico duradero y respetuoso del medio ambiente.
Textiles – Muchos de los productos textiles (camisas, chaquetas, pantalones, mochilas, etc) a base de cáñamo 100% ya están disponibles. Es tolerante a las heladas, requiere sólo cantidades moderadas de agua, y podría crecer en los 32 estados de México. Sobre una base anual, una hectárea de cáñamo produce más fibra de 2 a 3 hectáreas de algodón, y el papel tanto como 2 a 4 hectáreas de árboles. La fibra de cáñamo es más fuerte y más suave que el algodón, dura dos veces más como el algodón, y no el moho. El cáñamo no requiere pesticidas, herbicidas no, y sólo cantidades moderadas de fertilizante. El uso del cáñamo en lugar de los árboles reducen la demanda de la deforestación masiva y la lucha contra los daños ambientales causados ​​por la industria petrolera.
¿Por qué la legalización del cáñamo en México?
Cáñamo proporcionar a México una industria completamente nueva que podría generar ingresos para las familias rurales y las pequeñas empresas en los 32 estados de la República. El cáñamo sería una enorme fuente de energía limpia y la industria limpia y realmente revertir el daño ambiental causado por la industria del petróleo que contamina el aire, tierra y mar a través de todas las fases de uso. Otras razones para legalizar el cáñamo sería que sería:

  • Crear un uso productivo de las tierras públicas y privadas.
  • Ser utilizados para producir diesel no tóxicos y combustible de etanol y el aceite lubricante que permite casi todos los automóviles, tren, avión, o la quema de combustibles dispositivo mecánico puede funcionar con combustible de cáñamo.
  • Crecer en todos los estados de Baja California al Estado de México a Chihuahua y Chiapas.
  • Rendimiento de tres hasta seis toneladas por hectárea en los terrenos que se cultivan maíz, trigo o avena.
  • Se siembra después de otros cultivos se encuentran en lo que tiene una corta temporada de cultivo, dejando el suelo en perfectas condiciones para la cosecha del próximo año. El choque densa de hojas, de ocho a doce pies de altura, ahoga las malas hierbas.


Beneficios para los municipales, estatales y federales
Una pequeña cuota de licencias para la producción y distribución de este nuevo cultivo y fuente de energía generaría ingresos para los gobiernos municipales y estatales la lucha contra el déficit presupuestario.
Como los biocombustibles de cultivos nacionales alternativos, el cáñamo puede proporcionar a México una alternativa a la disminución de la producción de petróleo por PEMEX. (No debería ser un secreto que la producción de petróleo en México alcanzó su punto máximo alrededor del año 2000 tal como lo hizo en los EE.UU. en la década de 1970. No es por falta de inversión y la tecnología, ni la educación. La alternativa es seguir aumentando el costo de la gasolina PEMEX hasta que la economía screaches a su fin y la revuelta de la gente.)
La industria del cáñamo nuevo, desde la agricultura a los plásticos para la energía, crearía cientos de miles de empleos sostenibles en todo el país durante muchos años por venir.Esto reduciría el flujo de campesinos desempleados en los Estados Unidos y las ciudades superpobladas en todo México, con lo que la subvaloración de la fuente de trabajo para la droga, la prostitución y la trata de personas que ha plagado a México en los últimos 20 años.
Beneficios para los agricultores y las pequeñas empresas
Licencias de confinar a los ciudadanos y las pequeñas empresas charter que promover el empleo sostenible para los agricultores y millones de empresarios en todo el país y facilitar la independencia financiera para empresarios creativos de energía limpia.
Los agricultores podrían destilar etanol a partir de cáñamo en sus propias tierras, lo que reduce el costo de cultivar y transportar sus cosechas. Los agricultores también podrían utilizar el sobrante de sus cosechas de biomasa como fuente de materia prima para la producción de electricidad local, la reducción de costos de servicios públicos. Incluso algunos agricultores podrían vender su exceso de energía y capacidad de combustible a los agricultores neigboring otros, la creación de economías más sostenibles a nivel local.
Cáñamo para la Victoria en México
Al legalizar el cultivo de cáñamo ahora, México tiene la oportunidad de aprovechar el mercado de exportación y hacerse un hueco en el Norte, Centro y Sur América. La omisión de revocar la prohibición del cáñamo se traducirá en la disminución continua de la economía estadounidense y una gran oportunidad económica y ambiental será perdido.
Si un combustible fósil tan peligroso como el petróleo puede ser usado, entonces sin duda la utilización del cáñamo industrial no se puede negar. No hay lógica que puede bloquear la legislación para legalizar una planta, sólo la política torcida.
Como ningún otro momento de la historia, el México moderno sufre de una falta de producción nacional de energía limpia, la deuda sin precedentes personales y gubernamentales, y una comunidad agrícola indigentes.
¿Qué puede hacer para apoyar el movimiento para legalizar el cáñamo?
Los mexicanos preocupados por el empleo, emmigration, el tráfico de drogas, la energía, la contaminación, la guerra y la prosperidad económica, debemos actuar ahora. Las redes sociales como Facebook, Twitter, YouTube, LinkedIn y se puede utilizar para obtener el apoyo de valientes políticos locales que buscan un verdadero cambio en tiempos económicos difíciles.
Twitter hashtags: #hemp4victory #hemp4fuel

Proposal for the Legalization of Hemp in Mexico


What is hemp?
Hemp is one of the earliest domesticated plants known to humankind.  Hemp is mostly used as a name for low tetrahydrocannabinol (THC) strains of the plant Cannabis sativa, of fiber and/or oilseed varieties.   Cannabis sativa L. subsp. sativa var. sativa is the variety grown for industrial use, while C. sativa subsp., indica, typically known as marijuana, generally has poor fiber quality and is primarily used for production of recreational and medicinal drugs.  
The major difference between the two types of plants is the appearance and the amount of THC secreted in a resinous mixture by epidermal hairs called glandular trichomes, although they can also be distinguished genetically.  Oilseed and fiber varieties of Cannabis approved for industrial hemp production produce only minute amounts of this psychoactive drug, not enough for any physical or psychological effects. Typically, hemp contains below 0.3% THC, while cultivars of Cannabis grown for marijuana can contain anywhere from 2% to over 20%.

Hemp Today Around the World
Only recently, in the early 1900’s was it made illegal around the world following the lead of the United States.  It is ironic considering that United States Presidents George Washington and Thomas Jefferson grew hemp, used products made from hemp, and even wrote the United States Consitution on hemp and under pressure from John D. Rockefeller and his petroleum empire did the US decide that hemp was dangerous for America and the world. 
Despite it being made illegal in 1937 under the Marijuana Tax Act, the US government ran a nationwide campaign to grow hemp for use in World War II.  That campaign was called Hemp For Victory.  While more hemp is exported to the United States than to any other country, the United States Government does not consistently distinguish between marijuana and the non-psychoactive Cannabis used for industrial and commercial purposes. 
The laws in the US are on the verge of changing.  Since 19XX, 15 US states have legalized medicinal marijuana and popular support is growing everyday.  More importantly, legislation has been submitted to Congress for debate by the current leading Republican presidentail candidate, Ron Paul.  This proposed legislation is known as H.R. 1831, the Industrial Hemp Farming Act of 2011.
In modern times, hemp is being used for industrial purposes including paper, textiles, biodegradable plastics, construction, health food, biofuels, biomass, offering an envrionmentally friendly alternative to all petroleum biproducts.  Today the world leading producer of hemp is China with smaller production in Canada, England, Germany, and Eastern European nations, Australia, Chile and North Korea.  
UK-based Lotus began work a hemp-based car and released it into production and in Canada , an automobile called the Kestrel being produced for release by Motive Industries in 2012 which will be an electric car made of hemp composite and weighing only 2500 pounds .
Mercedes Benz of Germany has recently begun manufacturing automobile bodies and dashboards made from hemp.
Why Hemp?
Hemp is one of the faster growing biomasses known, producing up to 25 tonnes of dry matter per hectare per year. A normal average yield in large scale modern agriculture is about 2.5–3.5 t/ac (air dry stem yields of dry, retted stalks per acre at 12% moisture).  Approximately, one tonne of bast fiber and 2–3 tonnes of core material can be decorticated from 3–4 tonnes of good quality, dry retted straw.
It is very environmentally friendly as it requires few pesticides and no herbicides.  Results indicate that high yield of hemp may require high total nutrient levels (field plus fertilizer nutrients) similar to a high yielding wheat crop.

Fuel – Unlike oil, coal, natural gas or nuclear fuels, hemp is a biodegradable, renewable resource that could supply us with raw materials for thousands of years, without changing our climate and without producing waste that remains radioactive for millions of years. 

Plastics – Thousands of products made from petroleum-based plastics can be produced from hemp-based composites to create strong, durable and environmentally-friendly plastic substitutes.

Textiles – Many textile products (shirts, jackets, pants, backpacks, etc.) made from 100% hemp are now available.  It is frost tolerant, requires only moderate amounts of water, and could grow in all 32 states on Mexico.  On an annual basis, 1 acre of hemp will produce as much fiber as 2 to 3 acres of cotton, and as much paper as 2 to 4 acres of trees.  Hemp fiber is stronger and softer than cotton, lasts twice as long as cotton, and will not mildew.  Hemp requires no pesticides, no herbicides, and only moderate amounts of fertilizer. Using hemp instead of trees will reduce the demand for massive deforestation and counter the environmental damage caused by the petroleum industry.

Why legalize hemp in Mexico?
Hemp would provide Mexico with a completely new industry which could generate incomes for rural families and small businesses in all 32 states of the Republic. Hemp would be an enormous source of clean energy and clean industry and would actually reverse the environmental damage caused by the petroleum industry which contaminates the air, land, and sea through all phases of use.  Other reasons to legalize hemp would be that it would:
  • Create productive use of both public and private land.  
  • Be used to produce non-toxic diesel and ethanol fuel and lubricating oil  enabling nearly every automobile, train, plane, or fuel burning mechanical device can run on hemp fuel.
  • Grow in every state from Baja California to Estado de Mexico to Chihuahua and Chiapas.
  • Yield from three to six tons per acre on any land that will grow corn, wheat, or oats.
  • Be planted after other crops are in as it has a short growing season, leaving the soil in perfect condition for next year’s crop.  The dense shock of leaves, eight to twelve feet above the ground, chokes out weeds.


Benefits to Municipal, State, and Federal Governments
A small fee for licensing the production and distribution of this new crop and energy source would create revenues for city and state governments fighting budget deficits.
As a domestically grown alternative biofuel, hemp could provide Mexico with an alternative to decreasing petroleum production by PEMEX.  (It should be no secret that oil production in Mexico peaked around 2000 just as it did in the US in the early 1970’s.  It is not for a lack of investment and technology nor education.  The alternative is to continue increasing the cost of PEMEX gasoline until the economy screaches to a halt and the people revolt.)
The new hemp industry, from farming to plastics to energy, would create hundreds of thousands of sustainable jobs across the country for many years to come.  This would reduce the flow of unemployed farmers to the United States and to the overcrowded cities across Mexico, thereby undercutting the source of labor for the drug, prostitution, and human trafficking that has plagued Mexico for the past 20 years. 

Benefits to Farmers and Small Businesses
Confining licenses to citizens and chartered small businesses would promote sustainable jobs for farmers and millions of entrepreneurs across the country and facilitate financial independence for creative clean energy entrepreneurs.  
Farmers could distill ethanol from hemp on their own lands, reducing the cost of cultivating and transporting their harvest.  Farmers could also use the biomass leftover from their harvest as a source of feedstock for local electricity production, reducing utility costs.  Some farmers could even sell their excess energy and fuel capacity to other neigboring farmers, creating more locally sustainable economies.
Hemp for Victory in Mexico
By legalizing hemp cultivation now, Mexico has the opportunity to tap into the export market and gain a foothold in North, Central, and South America.  Failure to repeal Hemp Prohibition will result in the continued decline of the American economy and a significant economic and environmental opportunity will be lost. 
If a fossil fuel as dangerous as petroleum can be used, then surely utilization of industrial hemp cannot be denied.  There is no logic which can block legislation to legalize a plant, only twisted politics.
Like no other time in history, modern Mexico suffers from a lack of domestic clean energy production, unprecedented personal and governmental debt, and a destitute agricultural community. 

What Can You Do to Support the Movement to Legalize Hemp?
Mexicans concerned about jobs, emmigration, drug trafficking, energy, pollution, war, and economic prosperity, must ACT NOW.  Social networks such as Facebook, Twitter, YouTube, and LinkedIn can be used to garner support for courageous local politicians seeking true change in difficult economic times.  
Twitter hastags: #hemp4victory #hemp4fuel

The Energy Crisis of the 1970’s

What happened after Carter left office? What did the Reagan administration do that changed our course? This article looks pre-1980 at some of the causes of the oil crisis of the 1970’s

Amplify’d from harwich.edu
Thesis: The energy crisis of the 1970’s was caused by our reliance on foreign
oil and triggered a nationwide movement that advocated energy conservation
and alternate energy sources.
Natural resources that our nation relies heavily upon such as oil, petroleum
and natural gas are fossil fuels, which means that they will eventually cease
to exist. This gives nations that have an abundance of these natural resources
much economic and political power. The thought of this supply ending also
causes a search for renewable resources that would never cease to exist.
Petroleum or “black gold” provides the world with nearly half the energy
used. (10, 330) 660 billion barrels or 67% of the world’s oil reserves are
found in the Middle East. Saudi Arabia alone has 258 billion of these barrels
which is one fourth of the world’s oil. One tenth of the world’s oil is found
in Abu Dhabi, Iran, Iraq, and Kuwait. (10,332) Compared with this extensive
supply, the U.S. and Canada have only 3% or 32 billion barrels of the world’s
reserves. (10,333) Despite this, the U.S. and Canada consume more than four
times the amount of petroleum than the Middle East. The Middle East produced
19.8 million barrels and only consumed 4.8 billion barrels according to 1994
figures. The U.S. and Canada produced only 8.5 million barrels and consumed
a whopping 19.4 million barrels. (10,334) Today it is hard to imagine relying
solely on ourselves, for our energy needs. The U.S. used to provide for themselves,
but consumption grew too rapidly for the small supply it possessed. As the
U.S. began to rely heavily on imported oil from other countries, power struggle
emerged between the producers and consumers of this oil.

    The increase of oil imports became the number one concern
in America when Richard Nixon became president in 1969. A Cabinet Task Force
on oil Import control was established and was led by George Shultz the Labor
Secretary. (13, 589) He recommended doing away with quotas, having no minimum
of oil that the U.S. has to buy from foreign producers, but Nixon strongly
disagreed. Nixon believed that this would only increase imports and be a
threat to domestic industry, and he decided to keep the quotas. (13, 589)
This was obviously not in the interest of Middle Eastern countries and the
Shah of Iran quickly wrote to President Nixon. He explained that only if
the quotas were dropped could the stability of their country be ensured and
they could sell larger volumes of oil to the U.S. Nixon however, did not
agree to drop the quotas. (13,589) The problem with oil imports came to head
during the 1969-1970 winter which was the coldest in 30 years and power was
randomly turned off to preserve energy which caused brownouts along the Atlantic
Coast. (13,590) Nixon put price controls on oil consumption and discouraged
domestic oil in 1971. (13,590) These artificially low prices however could
not keep up with the changing market. If prices were low, there was little
incentive for conservation of energy or for new exploration for oil reserves.
(13, 590) Money was not coming in and some drilling was even ended prematurely.
This attempt at federal energy regulation was a failure. (3, 338)

    To work on the energy crisis, Nixon assigned James Akins
to the White House. He was the State Department chief oil expert and even
before the crisis was at its worst in 1973 he suggested we reduce consumption,
increase domestic production and only import from “secure sources”. In April
1973 Akins published some of his ideas in Foreign Affairs in an article entitled
“The Oil Crisis: This Time the Wolf Is Here.” He was comparing the oil crisis
with the Middle East to a ferocious wolf ready to attack. The wolf had certainly
arrived and that same year Nixon did away with quotas because America’s demand
for oil was too high for domestic production to keep up with it. For the
first time, the U.S. was vulnerable and not able to supply it’s allies in
the event of a crisis. (13, 591)

    The wolf was at full attack in the fall of 1973 when the
Yom Kippur War sent gasoline prices soaring in America. The same thing happened
in 1979 when the Shah of Iran fell from power. (13, 512L) In the Middle East
the Arab- Israeli wars of 1967 and 1973 greatly affected the flow of oil
throughout the world as they reduced or cut off their petroleum exports to
Japan and western countries. (10, 349) Egyptian jets attacked the Israeli
posts along the border of the Suez and in the Sinai on October 6, 1973. Also
Syrian aircrafts attacked northern Israel. This was the fourth and most dreadful
of the Arab-Israeli Wars. (13, 588) After Egypt launched this attack on Israel
the Soviets threatened to intervene. Breshnev, who was the Soviet leader
at the time believed that the Watergate scandal had weakened Nixon to such
a degree that he would not react. The Soviets did back down, but the Arab
world held the U.S. responsible for Egypt’s defeat by the Israelis. (2) On
both sides, the U.S. and the Soviet Union supplied armaments. But despite
all this machinery the strongest weapon in this war was oil in the form of
an embargo, which is a cutback on production and exports. (13, 588)

Many believe that there was actually a shortage of oil, but there was no
shortage at all. The Middle East just decided they weren’t being paid enough
for their problem. (9, 2) OPEC, or the Organization of Petroleum Exporting
Countries, which was originally formed to keep the price of oil down, was
too fragmented and competitive to help solve the crises or to be a successful
cartel, which is a combination of businesses or countries in this case to
limit competition. (11, 1) The economics and now the politics of oil were
changing. Iraq, Algeria and Libya were pushing for a price agreement and
they said if one was not made they would “exercise our rights on our own.”
This meant that they would not cooperate with OPEC and would set their own
prices, which would most likely be high, or in extremes would be in the form
of an embargo. Exporting countries took steps for the government to take
over oil companies because they did not want the growing gap between posted
prices and market prices to go to the favor of the oil companies. (13, 592)
They were using petroleum as a political weapon by using the dependence of
other countries on their oil supply and cutting off exports to those countries.
Petroleum gave them the power to ruin the economies of other nations by increasing
prices. (10, 349) Henry Kissinger said of the embargo, it “altered irrevocably
the world as it had grown up in the postwar period.” (13, 588) And as Nicholas
Lemann stated, “it demonstrated that America could now be ‘pushed around’
by countries most of us had always thought of as minor powers.” (8, 1142)
The Arab Oil Embargo demonstrated just how dangerous the United State’s dependence
on foreign oil was becoming. (8, 1132) This embargo resulted in the price
of gas per gallon to jump from 30 cents to over a dollar. Also a “windfall
profits tax” was presented to domestic oil producers. (9, 2) In 1973, the
Northeast suffered both from severe winter weather and the gas shortage,
which temporarily closed schools and factories. (8, 1132) The falling cost
of the dollar, expensive federal programs, and costly environmental regulations,
were just some of the few things Americans blamed for the energy crisis.
(8, 1134)

As the federal government became more and more involved with solving the
energy crisis, corruption became apparent. The Foreign Relations Committee
held hearings on the energy crisis during the week of June 2, 1973. Senator
George D. Aiken of Vermont attended and noted the corruption of the meeting
in his journal. Witnesses were going over what the energy would need to be
used for in the U.S. and completely left out agriculture. This was ludicrous
because the agricultural industry was the largest consumer of petroleum in
the national economy at the time. (1, 84) A bill was reported to Congress
in February 1974 that would give the president more authority over the distribution
of oil products. A cutback in the price of oil produced in the U.S. was presented
and senators from the oil states wanted to block this. To them it was more
important for the oil companies to remain stable than the nation as a whole
to be stable. (1, 85)

As the energy crisis began striking close to home, citizens of the United
States could see how huge of a problem energy had become. The 1970’s had
the highest unemployment rate since 1941 and the lowest industrial production
since 1937. (8, 1140) By 1979 the inflation rate was all the way at 11.3%
and rising. (8, 1135) This new inflation caused many Americans to doubt the
“American dream” that their children would have a better life. Writer Nicholas
Lemann wrote, “The nearly universal assumption in the post-World War II United
States was that children would do better than their parents. Upward mobility
wasn’t just a characteristic of the national culture; it was the defining
characteristic.” (8, 1140) Insanely high prices throughout the 1970’s increased
these concerns. In 1973 a barrel of crude oil cost $2.75 and in 1981 it went
to 34 dollars. (10, 349) Crude oil prices quadrupled between October 1973
and March 1974. By 1981 the nation was consuming 20 trillion cubic feet of
gas per year. Arab nations embargoed oil exports to the United States for
a total of six months. Ironically, the production of natural gas in the United
States was at its highest in 1973. But, this certainly did not counteract
the embargo. (12, 5)

Running out of usable oil, or supposedly running out was become a major concern
of the nation. Senate reports in 1975 indicated that the U.S. would run out
of usable oil before the year 2000. (6, 32) Although energy use is still
a problem today in 2003, it obviously did not happen as quickly as predicted.
Without a doubt the entire crisis sprung from our reliance on foreign oil.
Fewer oil wells were drilled in the U.S. starting in 1955 because foreign
oil was cheaper and more accessible. But after 1973, foreign oil was more
expensive and less available. (12, 59) 30 billion barrels of oil was discovered
in northern Alaska in the late 1960’s, but this large addition to the world
reserves was counterbalanced by an increase in oil consumption. (10, 333)
Imports were greatly increased in the years leading up to the crisis. In
1970, the U.S. imported 3.2 million barrels per day. In 1972, 4.5 million
were imported, and in the summer of 1973, 6.2 million were being imported.
(13, 591) America’s response to the crisis was interrupted because of Nixon’s
resignation of office due to the Watergate scandal. Ford, who did not take
any impacting steps to solve the energy crisis, carried out the remainder
of his presidency. (13, 512M) Carter, who was the next president-elect, carried
out many acts to encourage energy conservation. He practiced this conservation
in his own home by keeping the White House at 55 degrees during the night
and 65 degrees during the day, and wore long underwear to keep warm. His
plan for the nation promoted increased fuel production in the U.S. and development
of alternate energy sources. (8, 1133) Prior to Carter presenting his plan
to Congress, he appeared on television to address the public stating, “The
energy crisis has not yet overwhelmed us, but it will if we do not act quickly….
This difficult effort will be the ‘moral equivalent of war’, except that
we will be uniting our efforts to build and not to destroy.” He proposed
an Emergency Natural Gas Act to control the distribution of gas throughout
the country. Within one week Congress passed the act. (8, 1132) In November
1978 the National Energy Act was signed into law. (8, 1133)

    The “second oil shock” occurred in 1979 when OPEC held
up oil production, which caused gas prices to rise by 50%. Motorists in the
U.S. waited in line at gas stations for hours frantically buying gas before
it ran out. Carter was blamed for this. (8, 1133) Carter said of this “second
oil shock”, “It is a crisis of confidence. It is a crisis that strikes at
the very heart and soul and spirit of our national will. We can see this
crisis in the growing doubt about the meaning of our own lives and in the
loss of a unity of purpose for our nation. The erosion of our confidence
in the future is threatening to destroy the social and the political fabric
of America” (8, 1134) His television address did not include ways of dealing
with the problem or looking to the future. Americans felt that Carter was
not the man to lead them out of the crisis. His reelection campaign was made
difficult because right before the election the Federal Reserve Board caused
interest rates to soar when they put strong monetary controls to control
inflation. (8, 1143) Also, making his reelection campaign difficult was the
humiliation Americans felt as Iranian students took hostage sixty-three Americans
in November 1979. (8, 1137) Ronald Reagan ended up winning the election to
lead the U.S. into the 1980’s. Being a former actor, and holding strong conservative
views, Reagan presented Americans with the strength that they desired for
their weakening country. (8, 1143)

Throughout the 1970’s many steps were taken to make energy conservation an
important aspect of American life. On October 31, 1973 in New York the Public
Service Commission looked into the possibility of closing schools and cutting
off heat in the subways. (4, 1) The president could limit hours of operation
for schools and businesses, could ban advertising or displays of Christmas
lights, and could enforce a maximum temperature in office buildings all due
to the broad “Emergency Actions to Reduce Energy Consumption”. As early as
November 2, 1973, an emergency energy act was proposed to Congress to “to
suspend all environmental standards, to tax fuels, prohibit pleasure driving,
order early closing of schools and businesses, impose rationing and take
other steps to curb energy consumption.” (5,1) The energy crisis affected
all aspects of society, even the automobile market. In 1973, 30-cent gasoline
was no more and so was the “big American car.” Models such as the Honda Civic
became popular because of their fuel efficiency. (2) For two decades there
was even a federally mandated speed limit of 55 miles per hour in order to
save energy. Later it was done away with to keep the government from getting
too involved in state and local matters. (9, 7)

Some administration and Congress members wanted to add a 20 or 30 cent per
gallon tax, but George P. Shultz, Secretary of the Treasury, knew this would
only put more weight on the economy. The major problem with a large-scale
conservation effort was getting Americans to conserve energy without causing
more economic problems. (5, 26) Congress passed the Energy Policy and Conservation
Act in 1975. These acts regulated domestic oil prices and set up standards
for automobile use. (12, 5) The 800 mile long trans-Alaska Pipeline System
built in 1977 brought 2 million barrels of oil a day from Prudhoe Bay to
the port of Valdez. Due to this, imports from the Middle East were greatly
reduced. (8, 1143)

Many called the energy crisis an “energy shortage”. This term should not
be used because gas and oil are not the only forms of energy. Energy will
only cease to exist the day our sun disappears. (9, 7) John R. Quarles believed
that coal should replace oil as a boiler fuel. He was the administrator of
the Environmental Protection Agency. (5, 26) Eventually the electric utility
industry will have to look to other sources, the best of which would be nuclear
power. Other choices would be coal, ethanol, and solar power. (9, 6)

Ethanol is what petroleum would most likely be replaced with. It is made
from corn and other crops and therefore renewable. Use of ethanol would be
extremely positive for the nation’s farmers and would be much safer for the
environment. If a tanker spilled ethanol, it would just evaporate into the
air. We do not use ethanol today because petroleum is cheaper. During the
Arab embargo in the 1970’s, petroleum prices soared making ethanol look like
a good deal. But the prices of petroleum were purposely kept below ethanol
so it would not be replaced. (9, 4) Efforts to find new oil reserves were
greatly reduced in the 1980’s when oil prices fell. Oil and gas can also
be made from bituminous sands, coal, and oil shale. Scientists are working
on this, but it is extremely expensive. However, if oil prices continue to
rise as they have done since the 1970’s, these forms of energy could become
competitive in the worldwide market. (10, 349) Solar energy, wind energy
and geothermal energy, which are all possibilities to replace oil, are all
“diffuse” because they would not be useful in all areas of the world. (6,
42-43) Thomas E. Eastler said of finding alternate sources, “as a result
of this unchecked exploitation, we are forced to consider the consequences
of the end of the fossil fuel era. And, with the end of that era, I believe
also, will come the end of America’s fleeting love affair with petroleum.”
(6, 30)

Most experts believe that the demand for petroleum and the dependence on
Middle Eastern oil will only increase in the future. (10, 349) Even if petroleum
is replaced, the crisis could continue because the major companies that control
oil have already invested in gas, coal, uranium and new energy sources such
as oil shale and tar sands. So, the major problem is that the energy industry
is extremely monopolized. (7, 336) Today the energy crisis of the 1970’s
seems so familiar. Oil prices are rapidly increasing, and our relationships
with some of the Middle Eastern countries are extremely shaky. As President
George W. Bush forges on in his efforts for a war with Iraq, most people
are concerned with disarming Iraq of their weapons of mass destruction. The
one weapon of mass destruction that could never be taken away from them is
oil. We import so much oil from the Middle East that a war could greatly
influence oil prices and imports. The energy crisis of the 1970’s caused
the United States to step up and begin conservation efforts and explore alternate
energy sources. If oil prices continue their uphill climb, these alternate
sources will without a doubt become economically and politically superior
to oil. And perhaps one day, we will discover a resource that will supply
the world with infinite energy.

Works Cited

1. Aiken, George D. “The ‘Down Years’ 1972-74, A Senator’s View” American
Heritage.       Aug 1976. Vol. XXVII 5. New
York: American Heritage Publishing Co., 1976

2. America and the World Since World War II. Vol. III 1961-1975 From the
Kennedy Era to the Final U.S. Withdrawal From Vietnam. ABC, 1986.

3. Bartlett, Dewey F. “The Energy Crisis” The Annals of America, Vol. 19
1969-1973.  Chicago: Encyclopedia Britannica, Inc., 1974.

4. Clines, Francis X. “Curfews Hinted In Oil Shortage” The New York Times.
1 Nov 1973: A1.

5. Cowan, Edward. “Drastic Emergency Steps To Save Energy Proposed” The New
York Times. 2 Nov 1973: A1.

6. Hanley, Wayne and John Mitchell, eds. The Energy Book. Thomas E. Eastler:
The End of the Fossil Fuel Era. Brattleboro: The Stephen Greene Press, 1980.

7. Harris, Fred R. “Oil- Capitalism Betrayed in It’s Own Camp” The Annals
of America. Vol. 19 1969-1973. Chicago: Encyclopedia Britannica, inc., 1974.

8. McDonnell, Janet. America in the 20th Century: 1970-1979. New York: Marshall
Cavendish, 1995.

9. Palm, Kirby. The Energy Crisis: A Unique Perspective (online) http://www.nettally.com/palmk/nrg.html.
28 Feb 2003.

10. “Petroleum”. The World Book Encyclopedia Vol. 15. Chicago: World Book,
Inc., 1997.

11. The Energy Crisis Revisited (online) http://web.mit.edu/krugman/www.opec.html.
4 Feb 2003.

12. Weaver, Kenneth F. “America’s Thirst For Imported Oil- Our Energy Predicament”
Energy A National Geographic Special Report. Feb 1981.

13. Yergin, Daniel. The Prize- The Epic Quest For Oil, Money, and Power.
New York: Simon & Schuster, 1991.

Read more at harwich.edu